
AD-A223 064
RADC-TR-90-14
Final Technical Report
March 1990

KNOWLEDGE BASED QUALITY
ASSURANCE TOOLS

Northwestern University

Stephen S. Yau, Gwo-Long Huang, Jinshuan Lee, Yeou-Wei Wang

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

9G 0. 20 037

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Services (NTIS) At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-14 has been reviewed and is approved for publication.

APPROVED: At4-

JOSEPH P. CAVANO
Project Engineer

i ' a / "<: i

APPROVED: ("

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (COEE) Griffiss AFB NY 13441-5700.

This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or

notices on a specific document require that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

"IForm Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

"la REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a SECURITY CLASS*FICATION AUTHORITY 3. DISTRIBUT'O-N/AVAILA131LITY OF REPORT

N/A Approved for public release;

2b DECLASSiFICATION/DOWNGRADING SCHEDULE distribution unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NU.BER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-90-14
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

Northwestern University Rome Air Development Center (COEE)
6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS(City, State, and ZIP Code)
Department of Electrical Engineering
and Computer Science
Evanston IL 60208-3118 Griffiss AFB NY 13441-5700

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Rome Air Development Center COEE F30602-81-C-0185
9c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNITELEMENT NO. NO. NO ACCESSION NO.

Griffiss AFB NY 13441-5700 615581 5581 20 P7
11. TITLE (Include Security Classification)

KNOWLEDGE BASED QUALIFY ASSUPANCE TOOLS

12. PERSONAL AUTHOR(S)

Stephen S. Yau, Gwo-Long Huang, Jitishuan Lee, Yeou-Wei Wang
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final FROM NJQ88 TO Noy 9 March 1990 100
16. SUPPLEMENTARY NOTATION

N/A
17. C.OSATI CODES is. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Truth Maintenance System Quality Measurement, Y (-
12 05 1Quality Assurance Expert, Systems ' ...

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

i A long range approach for integrating software quality inf ation with knowledge based
engineering technology was developed. A Software Quality Assu ce Expert System framework

was proposed to plan software quality assurance activities, evalua systems designs,
balance mutually conflicting quality factors, and make design refinem t suggestions. This
effort determined the basic system architecture and interaction among sy em components.
The proposed expert system framework would include data objects of an Obje -Oriented Data
Base, a Rule Set, Meta Rules, and a Dependency-Based Truth Maintenance Syst . To help il-
lustrate how such a system could be used, examples were provided to show how the expert
system could assist Software Quality Assurance activities for software reliablity. The
DOD community will benefit from the results of this work; particularly, anyon attempting
to use expert systems to improve the quality of their software., J

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
(M U'1r' 4SSIFIED. "-V!IM',ED C1 SAME A3 ,P7 E] DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
T oseph P. Cavano (315) 330-4476 RADC (COEE)
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

Contents

1 Introduction 1
1.1 The Objective of the Project 1
1.2 Organization of the Report 2

2 Background 4
2.1 Software Quality Assurance (SQA) Framework 4
2.2 Knowledge Representation 6
2.3 Inference 7

2.3.1 Rules, Meta Rules, and Planning 8
2.3.2 Hypothetical Reasoning - Tiuth Maintenance Systems 9

2.4 Current Expert System Building Tool. 10

3 An Expert System Framework for Software Quality Assurance 14
3.1 System Architecture '5
3.2 Characteristics of Our Expert System is

4 Object-Oriented Data Representation for SQA 20
4.1 Advantages of Object-Oriented Data Representation 21
4.2 Features and Terminologies in the Object-Oriented Representation . . 23
4.3 Objects and Classes 25

5 Quality Assurance Activities with Rules 30
5.1 Rule Set (RS) 31
5.2 Meta Rules (MR) 37
5.3 Examples in the Quality Assurance Activities 39

6 Dependency-Based TMS (DTMS) 41
6.1 Motivations for Using the DTMS 41
6.2 Definitions 42
6.3 DTMS Approach to Efficient Search 44
6.4 DTMS Algorithm 47

7 An Integrated Example 49

8 Development Issues 58
8.1 Expert System Building Tool Selection 58
8.2 Application Scope for SQAESF 60

9 Conclusions and Future Work 62
9.1 Summary of the Resulks62
9.2 Future Work 64

A Metric Questions for Reliability Factor 67
A.1 Software Requirement Analysis Phase 68
A.2 Detailed Design Phase 70
A.3 Coding and CSU Testing 74

B Detailed Design and Coding for GEM 78
B.1 Detailed Design of GEM 78
B.2 Coding of GEM 80

Bibliography 87

ii

List of Figures

2.1 A software quality measurement framework 5

3.1 A software quality assurance expert system framework 16

4.1 Phase and level relationship for software development 22
4.2 Software components hierarchy.. 26
4.3 Software quality information hierarchy. 26

7.1 The object hierarchy for the GEM example 52
7.2 The quality values for the GEM example in SRA Phase 53
7.3 The dependency-directed backtracking paths of the GEM example. 56

Accession For

NTIS GRA&I

DTIC TAB

Unannounced El
Justification-

By
Distribution/__

Avatibiiity Codes
i--vrct1 and/or

,Dist Special

Iii

List of Tables

7.1 The metric values for the GEM example in the Software Requirement
Analysis Phase 51

7.2 The revised metric values for the GEM example in the Software Re-
quirement Analysis Phase 57

iv

Chapter 1

Introduction

1.1 The Objective of the Project

The objective of this project is to develop a long range approach for integrating
information available from the software quality framework [1-2] with knowledge based
engineering technology. In order to ensure high quality software and achieve cost-
effective software development and maintenance, software metrics should be applied
during the entire software development cycle to measure and predict the quality of
software products, such as reliability, portability, efficiency, maintainability, etc.

The purpose of this project is to provide knowledge based assistance for performing
quality assurance, validation and verification throughout the entire software develop-
ment cycle to aid software acquisition managers and software developers. Various
metrics for software attributes, such as accuracy, anomaly., simplicity, consistencv.
traceability, modularity, simplicity, will be collected and stored in an object-oriented
data base for all phases of the software development cycle, such as software require-
ment analysis pbpse., preliminary design phase, detailed design phase, coding, and
testing phase, and maintenance phase. The results can be applied du, , the en-
tire software cycle to assist the software developer and maintainer in predicting the
quality expected for the final product in the early stages so that error correction, op-
timization, functional and performance enhancement, and improvement of efficiency
can be taken early when they are more effective and economical.

One of the most important goals for software engineering researchers is to improve
the quality of software product. Software Quality Assurance (SQA) i.. an activity to
improve the software quality [3-7]. The requirements for a software qu; lity program in
DOD-STD-2168[7] are evaluation of software, evaluation of software documentation,
evaluation of the processes used in software development, evalu.Lio. of the software
development library, etc. According to the ANSI/IEEE standards [4], SQA has been

dcfined as -plaiined and systematic pattern of all actions necessary to provide ade-
quate confidence that the software confirms to establish technical requirement". A
number of solutions for improving software product quality were proposed in the past
decades [3]. Three kinds of issues regarding to the software quality assurance ac-
tivities were discussed in [3]. They are managerial issues concerning the planning.
organization, control., standards, practices, and conventions; technical issues concern-
ing the requirement specification, design, programming, testing and validation; and
issues concerning the use of software development tools in the softwarc development
process.

In order to increase the effectiveness of software management, we are dealing
with the questions, such as how can we do a better job of project planning? and
what type of development process should we choose? Since the software quality
depends upon the skill and performance of all the programmers who work on it, we are
also concerned with the standards, such as documentation standards, programming
standards, and SQA standards. In the technical issues, we are concerned with the
software construction methodology, i.e., the construction of requirement specification,
design. and coding (programming). After the software products have been developed,
we are concerned with the testing and validation of such software products against
the initial requirement specification. Finaly, we can have a set of tools assisting
the development of a software product throughout the entire software development
cycle. In general, there are tools for all phases of the software development cycle
(i.e., tools for requirement analysis, tools for design, tools for implementation, and
tools for testing), tools for planning, tools for key development support systems (i.e.,
approaches to the software engiiieering environments).

Sottware metrics [8-11] are normally used to characterize the essential features of
software quantitatively so that classification, comparison, and quantitative analysis
can be applied. The primary purpose of using software quality metrics is to improve
the quality of the software product by specifying it in software requirement and by
predicting and measuring software quality during various phases of software devel-
opment cycle. The concepts can improve quality since they are based on achieving
positive influence on the product. In order to assure software quality, a framework for
software quality measurement was proposed [1], and an Automated Measurement Sys-
tem. (AMS) [12] was developr'- for collecting information on various software quality
metrics during the software development cycle.

1.2 Organization of the Report

In this project, a Software Quality Assurance Expert System Framework (SQAESF)
is presented. This system is used to plan the software quality assurance activities,
evaluate systems designs, balance mutually conflicting quality factors, and make de-
sign refinement suggestions.

2

In this report, we will present a framework for developing such an expert system
for soft, 'e quality assurance. In Chapter 2. the background information used in this
rep(r , given. A comparison of the current expert system technologies according
t, ,ifferent knowledge representations and inference methods will be made. Also.
some of the technologies used in our fiamework including the use of object-oriented
data base, rules and meta rules as the inferential knowledge, and truth maintenance
system, will be described. In Chapter 3, an overview of our expert system frame-
work for quality assurance is presented. In this chapter, the basic system architecture
and interactions among system components will be described. In Chapters 4 to 6.
details of this expert system framework are presented. They include data objects of
the Object-Oriented Data Base (OODB). the Rule Set (RS), the Meta Rules (MR).
and the Dependency-Based Truth Maintenance System (DTMS). In Chapter 7. an
integrated example will be given to illustrate how our framework can be used at var-
ious phases of the software development cycle. Specifically, the requirement analysis
phase will be used to show how a requirement specification can be developed following
the metric question guidelines. In Chapter 8, we will discuss what would be needed
for implementing this expert system framework. Comparisons of the current expert
system building tools will be presented and suggestions in selecting an appropriate
expert system building tool will be made. In Chapter 9, we will discuss what are
needed in order to fully utilize the potential and what the difficulties and limitations
will be. Finally. in Appendix A, metric questions for some phases of software de-
velopment cycle will be listed and Appendix B will contain the detailed design and
coding for the integrated example described in Chapter 7.

For illustration purpose, the software reliability factor will be used to show how
the expert system can assist the Software Quality Assurance activities. The reliability
of computer-based systems (particularly embedded systems) within the Department
of Defense (DoD) has been a subject of considerable concern for a number of years
[131. For most DoD systems, the reliability of a system is critical to effective mission
performance.

3

Chapter 2

Background

2.1 Software Quality Assurance (SQA) Frame-
work

Software quality is a combination of many conflicting factors, such as reliability versus
efficiency and efficiency versus integrity [2]. In the software quality framework pro-
posed by Cavano and McCall [1], software quality is described as a hierarchical model.
This model, as shown in Figure 2.1, has its highest level as a set of software quality
factors which are user/management-oriented terms and represent the characteristics
which comprise the software quality. At the next level, for each quality factor, there
is a set of criteria which are the attributes that, if present in the software, provide the
characteristics represented by the quality factors. At the lowest level of the model are
the metrics which are quantitative measures of the software attributes defined by the
criteria. Each metric is represented by a set of metric elements usually in the form
of check lists. Several metric elements, completed at several points in the software
development cycle, may be combined in calculating for a single metric.

There are 13 user-oriented quality factors of software product: reliability, cor-
rectness, efficiency, integrity, survivability, usability, maintainability verifiability, ex-
pandability, flexibility, interoperability, portability, and reusability. 29 quality criteria
which are software-oriented attributes, are defined to provide a more detailed repre-
sentation of what a particular software quality factor means. Each criterion consists
of one or more quality metrics which are defined by one or more metric elements.
Metric elements are detailed questions concerning the software products.

For example, reliability evaluates joftware failures. The formula used is in terms
of the total number of software errors in total executable lines of code. The reliability
consists three criteria: Accuracy, Anomaly, and Simplicity. Accuracy means the
attributes of the software which provide the required precision in calculations and

4

FACTOR

IMETRIC MERI METRIC

Figure 2.1: A software quality measurement framework.

5

output. Anomaly means those attributes of the software which provide for continuity
of operations under and recovery from nonnominal conditions. Simplicity means
those attributes of the software which provide for the definition and implementation
of functions in the simplest and understandable manner. Each criterion is evaluated
by some questions which best describe the quantitative measures of the attributes.

This hierarchical model for software quality offers several advantages. First, it
covers all the phases of the software development cycle. At each key milestone in
the development process, the quality of the software can be evaluated and an early
feedback can be obtained to let the developers know whether to continue or stop the
development process. Second, it is a complete measurement of the software quality
and offers a wide range of standpoints for the software quality from the user-oriented,
software-oriented, or quantitative-oriented points of view.

2.2 Knowledge Representation

There are many different ways to encode: the facts and relationships that constitute
knowledge [15-16]. The most widely used approaches are semantic networks, context-
parameter-value triplets, frames, logical expressions, and rules.

Most general representational scheme for knowledge is the semantic network (or
semantic net) [16]. A semantic retwork is a collection of objects represented by
nodes, which are connected together by arcs or links. Ordinarily, both the links and
the nodes are labeled. There are no absolute constraints as to how nodes and links
are named.

Another common way to represent knowledge information is context-parameter-
value (or object-attribute-value) triplets [17]. In this scheme, contexts may be physical
entities such as a door or a transistor, or they may be conceptual entities such as a
logic gate, a bank loan, or a sales episode. Parameters are general characteristics or
properties associated with contexts. The final member of the triplet is the value of a
parameter, which specifies the specific nature of a parameter in a particular situation.

Frames [18] provide another method for representing knowledge information. A
frame is a description of an object that contains slots for all of the information associ-
ated with the object. Slots, like parameters, may store values. Slots may also contain
default values, pointers to other frames, sets of rules, or procedures by which values
may be obtained. The inclusion of these additional features makes frames different
from context-attribute-value triplets. From one perspective, frames allow for richer
representations of knowledge.

6

Logic [19: provides another way to represent knowledge information. There are
several logical nolalions. Two most common forms are propositional logic and pred-
icate calculus. Propositional logic is a common logic system. Propositions are state-
ments that are either true or false. Propositions that are linked together with connec-
tives, such as AND. OR, NOT, IMPLIES, and EQUIVALENT, are called compound
statements. Propositional logic is concerned with the truthfulness of compound state-
ments.

Predicate calculus [19] is an ex-tension of propositional logic. The elementary
unit in predicate logic is a term (an object). Statements about objects are called
predicates. Each predicate is either true or false. Predicates can address more than
one term. Ordinary connectives can be used to link together predicates into larger
expressions.

Rules [20] are used to represent relationships. One of the simplest rule is an if-
then rule. In an if-then rule, there is an expression or an if clause as the premise
part. The other single expression or then clause is taken as a conclusion.

2.3 Inference

Inference and control strategies (inference engine) in a knowledge based system use the
facts and rules stored in the knowledge base. The inference engine of an expert system
stands between the user and the knowledge base. The inference engine performs two
major tasks: First, it examines existing facts and rules and adds new facts when
possible. Second, it decides the order in which inferences are made.

Several different inference mechanisms have been explored. Forward chaining,
hypothetical reasoning, and meta-control are widely used approaches. In our ex-
pert system, the forward chaining (rules) and the hypothetical reasoning (the truth
maintenance) are used [21].

Forward chaining starts with data to be input or with the situation currently
present in a global data base. The data or the situation is matched with the antecedent
conditions if part in each of the relevant rules to determine the applicability of the
rule to the current situation. One of the matching rules is then selected. For example,
meta rules help the user determine the order in which the rules should be tried. The
rule's consequents then part are used to add information to the data base or to
actuate some procedure that changes the global situation.

Hypothetical reasoning refers to solution approaches in which assumptions may
have to be made to enable the search procedure to proceed. However, later along the
search path, certain assumptions may be found that are invalid and therefore have to
be retracted. This makes the data base of the hypothetical reasoning nonmonotonic;
that is, a hypothetical reasoning is also a nonmonotonic reasoning. This hypothetical

7

reasoning in our expert system is handled by the truth maintenance approach. This
approach is to keep track of the assumptions that support the current search path
and to backtrack to the appropriate branch point when the current path is invalid.

2.3.1 Rules, Meta Rules, and Planning

The word planning refers to the process of computing several steps of a problem-
solving procedure before executing any of them [22]. Generally, a planning system
can perform the following functions:

" Choose the best rule to apply next based on the best available heuristic infor-
mation. One way of doing this is first to isolate a set of differences between
the desired goal states and the current state, and then to identify those rules
that are relevant to reducing those differences (like in the means-ends analysis
method exploited by General Problem Solver [23]). This process can also be
assisted by using meta rules in guiding which of the rules is to be applied next.

" Apply the chosen rules to compute the new problem state that arises from its
application. After the rules are selected for execution, applying rules are easy.

" Detect if a solution has been found. A planning system has succeeded in finding
a solution to a problem when it has found a sequence of operators that trans-
forms the initial problem state into the goal state. In our expert system, the
goal of the planning system is a high quality software product.

* Detect deadends so that they can be abandoned and the system's effort can be
directed to more fruitful direction to find a solution. As the planning system is
searching for a sequence of operators to solve a particular problem, it must be
able to detect the path that can never lead to a solution. In our case, when the
quality planning system detects a plan which leads to a low quality value, the
exploring path should be terminated and a new plan should be generated.

There are many planning approaches capable of carrying out actions in the real
world in order to achieve some definite purposes. One of the earliest techniques to
be developed for solving compound goals that might interact with each other was the
use of a goal stack. This was usually referred to as linear planning, and was used by
STRIPS [24] in the robot's world. In this method, the planner makes use of a single
stack that contains both goals and operators that have been proposed to satisfy those
goals. Data base and a set of operators (PRECONDITION, ADD, and DELETE)
are used to control the actions. Although it offers simplicity in the planning of the
robot's world, it has a very limited application domain.

S

Another planning approach, the case-based planning [25], formulating new plans
and debugging old ones by using experiences stored in the memory. Since the experi-
ences and past plans are so important to the case-based planning, it usually involves
some theory of learning and memory organization. Since this approach relies heavily
on the past experience to make new plans., the application areas in using case-based
planning are still very limited.

Many Al programs have had the ability to break a problem into subproblems.
that is, to find a solution by a divide-and-conquer strategy. However, a program uses
a hierarchical approach only if it has the additional capability to defer consideration
of the details of a problem. Hierarchical planning [27-28] is one of the planning
approaches which distinguishes between important considerations and details. The
hierarchical planning creates descriptions of abstract states and divides its planning
task into subproblems for refining the abstract states. This is also referred as the least
commitment planning and has been used successfully in MOLGEN (plans gene -io ing
experiments in molecular genetics). In this approach, the decisions are deferred as
long as possible, and thus the planner's option is kept open.

Since in the hierarchical planning, the detailed decisions are often deferred as
long as possible, a meta-plan [28] is usually used to perform the planning process.
The meta-plan provides a framework for partitioning control knowledge into layers
so that flexibility is achieved without the complexity of a large monolithic system.
The hierarchical planning can reduce exponential problems to problems with linear
complexity [29].)

In order to define the actions using the planning system, there must be rules for
performing actions and rules for guiding which rules to be used. We define those rules
for performing actions (improving the quality of the software quality) as quality rules,
and those rules guiding which rules to be used as meta rules [30]. In Chapter 5, we
will see that the rules are used as a guideline to assist the software quality assurance
activities at various phases of the software development cycle. The meta rules are
strategies to guide the use of knowledge in the application domain. The meta rules
can be used for rule selection and justification.

2.3.2 Hypothetical Reasoning - Truth Maintenance Sys-
tems

Computer reasoning programs usually construct computational models of situations.
To keep these models consistent with new information and changes in the situations
being modeled, the reasoning programs frequently need to remove or change portions
of their models. These changes sometimes lead to further changes, for the reasoner
often constructs some parts of the model by making inferences from other parts of
the model.

9

One approach to keep computational models consistent is to record the reasons
for believing or using each program beliefs, inference rules, or procedures. In [31] a
program called the Truth Maintenance System (TMS) which supports a powerful form
of backtracking called dependency-directed backtracking [32] is used to determine the
current set of beliefs from the current set of reasons, and to update the current set of
beliefs in accordance with new reasons in an incremental fashion.

Several systems based on the TMS model have been produced [33-36]. There is.
however, no one common implementation strategy. Instead, all these systems have
to be modified to satisfied the needs of the particular application domain. The exact
form of the data structure of these systems depends on the design representation the'
used. These truth maintenance systems adopt the same view of problem solving as a
conventional TMS.

2.4 Current Expert System Building Tools

Expert systems are also called knowledge based systems. For consistency, they, will
be called expert systems throughout this report. Expert system building tools (ex-
pert system shells) can be divided into four categories: inductive, simple rule-based,
structured rule-based, and hybrid system building tools [14,15,21,37]. We will review
them briefly.

" Inductive tools. Inductive tools generate rules from examples. These tools come
in two sizes: large inductive tools, which run on mainframes and PCs, and small
inductive tools, which run only on PCs. They are derived from experiments
conducted in machine learning. These tools are useful for simple tasks that rely
on examples, but cannot be used to develop complex knowledge representations.

" Simple rule-based tools. Simple rule-based tools use if-then (situation-action)
rules to represent knowledge. They can be run on PCs. They lack context
trees as well as some other editing features commonly available in structured
rule-based tools.

" Structured rule-based tools. Structured rule-based tools can be run on main-
frames, such as VAX's, LISP machines, UNIX workstations, and PCs. They
tend to offer context trees, multiple instantiation, confidence factors, and more
powerful editors. These tools use if-then rules arranged into sets. These rules
are like separate knowledge bases. These systems are more desirable in case
where a large number of rules are involved, if the rules can be subdivided into
sets.

10

tHybrid tools. Hybrid tools can be run on LISP machines, VAX's, UNIX work-
stations. and PCs. These tools use object-oriented programming techniques to
represent elements of each problem and support hypothetical reasoning. The
system will work on objects. An object can contain facts, if-then rules. or
pointers to other objects. The' are designed to build systems that contain
500 or several thousand rules and may include the features of several different
consultation paradigms.

The first two categories of expert system building tools (expert system shells) are
the inductive tools and the simple rule-based tools. The expert system building tools
of the first category are useful for simple tasks that rely on examples, and those of the
second categories are good for systems with rules less than 500 rules. Since large-scale
software is too complex to be described using these tools, they are not suitable for
software quality assurance application and will not be discussed further here.

The other two categories of expert system building tools (expert system shells)
are structured rule-based tools and hybrid tools. The structured rule-based tools are
divided into two types: mid-size rule-based tools and large rule-based tools. M.1 and
KES are considered mid-size rule-based tools, and S.1 is considered a large rule-based
tool. Finally, ART, KEE, and Knowledge Craft are considered hybrid tools. Because
these tools are suitable for our use we will discuss them briefly.

M.1 [38] is a product of Teknowledge Inc. M.1 was introduced in 1984 as a tool
to assist knowledge engineers in prototyping knowledge systems. In M.1, facts are
represented as attribute-value pairs (attributes are called expressions) with accompa-
nying confidence factors. Production rules represent heuristic knowledge. The M.1
inference engine is a simple back-chainer in the tradition of MYCIN. Users interact
with M.i by tying answers to questions posed by the system. There are explanation
facilities as well as trace functions for knowledge based debugging. On-screen menus
are available that list appropriate responses. M.1 was originally implemented in PRO-
LOG and has since been released in C programming language. M.1 is available for
IBM PC XT and IBM mainframes.

Knowledge Engineering System (KES) [39] is a production of Software Architec-
ture and Engineering (Software A&E). Facts in KES are represented as attribute-value
pairs with associated confidence factors or probabilities. Attributes and values can be
arranged in hierarchies. Relations among facts are represented as production rules,
using statistical pattern classification techniques, or with hypothesis test cycles. Users
communicate with KES through a line-oriented interaction. Multiple-choice questions
provide a list of alternatives, and users choose one by number. KES is implemented
in Wisconsin LISP, a dialect of LISP. It is also available written in FranzLISP for
DEC VAX running under UNIX operating system, for CDC CYBER running under
A-LISP, and for Apollo workstation running under Portable Standard LISP (PSL).
KES is also implemented in IQLISP for IBM PC XT. C version is also available.

11

S.1 [40) is a knowledge engineering tool offered by Teknowledge, Inc. S.1 is an
integrated package of software, training, sample knowledge systems, documentation.
maintenance, and support. Facts in S.1 are stored as object-attribute-value triplets
with associated confidence factors. Objects (also called classes) can be grouped into
class types. Other relationships are represented as production rules. Existential and
universal quantifiers may be included in the premises of rules. The S.1 inference engine
is backward chaining. Users communicatc with S.1 by selccting items from a menu
with a mouse, or by entering information with the keyboard. Help and explanation
facilities are available. S.1 is implemented in LISP and is available on Xerox 1100,
Symbolics 3600, and VAX computers.

Automated Reasoning Tool (ART) [41] from Inference Corporation is a tool kit for
knowledge system development. The kit contains four major components: a knowl-
edge language, a compiler, an applier, and a development environment. ART provides
a number of representations to store and maintain facts. One of the representations
is the traditional O-A-V triplets. A second means of representation, called a fact,
is a proposition with a truth value and a scope. The inference engine or knowledge
applier is described as being an opportunistic reasoner. This means that ART can
reason with both forward and backward chaining, or with explicit procedural com-
mands. Rules affect the direction of inference. In this way the inference engine moves
opportunistically, depending on the pattern of intermediary results. ART also sup-
ports confidence ratings. ART has a wide variety of interface features, all oriented
toward helping the knowledge engineers to develop an expert system. The tool is
flexible enough that a skilled kn3wledge engineer can use ART to develop whatever
user interface he or she desires. ART is written in LISP and runs on TI's Explorer,
DEC VAX, Sun workstation, IBM PC RT, and LISP machines (produced by Xerox
and Symbolics).

Knowledge Engineering Environment (KEE) [42] is an integrated package of soft-
ware tools available from IntelliCorp (formerly IntelliGenetics). In 1983 InteliCorp
began selling KEE, a hybrid tool derived from its work with genetic engineering soft-
ware. KEE's basic knowledge representational paradigm is frames, which unify the
procedural and declarative expression of knowledge. The inference scheme for KEE
is quite flexible. It can be programmed to behave as a backward chainer or a forward
chainer. Values in slots can be manipulated, and results ripple throughout the logical
structure of the knowledge base. KEE can take advantage of a truth maintenance sys-
tem for planning or simulation problems [43]. There is no sharp distinction between
the consumer and the creator of KEE knowledge base. The user interface provides a
number of graphics features that aid the knowledge engineer in the development and
debugging of a knowledge based system. KEE is a hybrid system and therefore can
be extended by the knowledge engineer. KEE is implemented in LISP and is available
on Xerox 1100 machine, Symbolics, LMI LAMBDA, TI Explorer, Apollo, Sun, and
IBM PC RT workstation.

12

Knowledge Craft [15" was first introduced in 1985 by the Carnegie Group. Knowl-
edge Craft is based on a semantic network approach. The basic knowledge represen-
tation paradigm in Knowledge Craft is the schema network. Each schema can have
any number of associated slots. By making extensive use of the meta-information as-
sociated with the slots in a schema, Knowledge Craft allows the developer to provide
default values, demons, cardinality restrictions, and range and domain restrictions.
Knowledge Craft provides object-oriented programming techniques to permit data
abstraction, object specialization, and the passing of information via message. In
Knowledge Craft, inheritance is specified at the relation level. It means that a user
can specify which slots and values can be included and which can be excluded in
any particular relationship at the time the relationship is established. Knowledge
Craft provides a context mechanism that allows different versions of the knowledge
base. This is used to model and test alternative situations. Knowledge Craft lacks
truth maintenance. Knowledge Craft provides both forward and backward chain-
ing. Knowledge Craft is written in Common Lisp and is avdildble on Symbulics, TI's
explorer, DEC VAX. HP Al workstation, and IBM PC RT workstation.

The rule capacities of an expert system building tools (expert system shells) should
be considered for different scales of software projects. Hybrid expert system building
tools are suitable for large scale software project. Further discussions and comparisons
of expert system building tools for our use are given in Chapter 8.

13

Chapter 3

An Expert System Framework for
Software Quality Assurance

The primary purpose of using software quality information is to improve the quality
of software product by specifying software quality requirements and by measuring
software quality. To achieve this objective, an expert system framework for software
quality assurance is presented. This framework provides software quality monitor-
ing, software development evaluation, conflicting factors balancing, and refinement
suggestions in each phase of the software development cycle.

Traditionally, a data base system only stores facts. They do not have the ability
to store inferential knowledge. With the advent of knowledge base systems, facts and
inferential knowledge can be stored together.

An expert system consists of two parts: knowledge base and inference engine. The
inference engine uses the knowledge in the knowledge base to do inferences. Rules,
meta rules, and facts are the major components in the knowledge base. Rules and
meta rules contain the control information for the expert system. Facts represent the
data information for the expert system. The inference engine uses the control strategy
specified in rules and meta rules to retrieve, insert, delete, or modify facts. In our
approach, the data base used to represent facts is object-oriented. The reasons for
choosing object-oriented data base are stated in Chapter 4. Rules, meta rules and a
truth maintenance system are used to represent the inferential knowledge. Instead of
developing an inference engine, we will select an off-the-shelf expert system building
tool, and suggestions for the selection of expert system building tools will be given in

Chapter 8.

14

3.1 System Architecture

Our expert system framework, which is shown in Figure 3.1 consists of the following
major components: the Object-Oriented Data Base (OODB), the Inference Engine
using the Rule Set (RS) and the Meta Rules (MR) as inferential knowledge, and the
Dependency-Based Truth Maintenance System (DTMS). Functions of each compo-
nent are stated as follows:

" The Object-Oriented Data Base holds all software quality information, such
as factors, criteria, and metrics values. The software quality information is
obtained from the AMS.

" The Inference Engine is used as the control center to manage the operation flows
of the system. The Inference Engine provides only non-hypothetical reasoning.
It is the main interface of this expert system to interact with other tools. The
Inference Engine uses inferential knowledge stored in the Meta Rules and the
Rule Set:

The Meta Rules (MR) contain the meta rules provided by our expert sys-
tem to specify the priority of the rules to be activated.

- The Rule Set contains rules, such as Quality Guideline Rules, Quality Mon-
itoring Rules, Automatic Quality Collection Rules, User's Goal Satisfied
Rules, and Quality Improvement Rules (described in Chapter 5). These
rules in the Rule Set are provided by our expert system. When a rule from
the Rule Set (RS) is interpreted in the Inference Engine, some actions will
be performed.

" The Dependency-Based Truth Maintenance System (DTMS) uses hypothetical
inference strategy. It is used to maintain truth in the Object-Oriented Data
Base and provides suggestions for software quality improvement.

We will present an expert system framework for software quality assurance during
the software development cycle. Meta rules are selected by the Inference Engine to
control where the system is to start and which rule the system is to select from the
Rule Set (RS) to be executed. When our expert system is invoked by the user, the
Inference Engine will choose a rule from the RS based on the current development
phase (i.e., requirement specification phase, design phase, coding phase, etc.) to
activate other components in the system.

For example, the Inference Engine will select one of the Quality Guideline Rules
(QGRs) in the Rule Set (RS) based on the meta rules from the MR to provide design
guidelines before starting each major phase of the software development cycle. After
some milestone in the software development cycle, the Inference Engine will select one
of the Automatic Quality Collection Rules (AQCRs) in the RS based on the meta

15

Rule Set

(RS)

Rule

Meta Rules Inference Control
(M) Meta Engine

Rule A

Control Object

A M S Control Data Base Control LD T M S

DTMS - DEPENDENCE-BASED TRUTH MAINTENANCE SYSTEM

AMS - RADC AUTOMATED MEASUREMENT SYSTEM

Figure 3.1: A software quality assurance expert system framework.

16

rules from the MR. The Inference Engine will execute the rule and send a command to
the Object-Oriented Data Base to retrieve quality factor information from the AMS.
The Inference Engine will also select one of the Quality Monitoring Rules (QMRs)
in the RS based on the meta rules from the MR to constantly monitor the current
software product quality values using the information stored in the Object-Oriented
Data Base. Whenever the system detects a low quality value, one of the Quality
Improvement Rules (QIRs) in the RS will be selected by the Inference Engir., to
activate the DTMS. Otherwise. one of the User's Goals Satisfied Rules (UGSR-s) in
the RS will be selected by the Inference Engine to inform users that the goals of the
software quality have been achieved.

In the software quality framework [1], quality factors are measured at the end
of each phase. The quality factor information will be acquired from different levels
of software items (system level, unit level, etc.). The quality factor information
represents the integrated quality factor information for the software product at the
end of each phase. The Object-Oriented Data Base transforms data (quality factor
information) from the ANIS to object forms under the control of the Inference Engine.
The Inference Fngine will use quality factor information to make inference and the
DTMS will use quality factor information to do backtracking.

The responsibility of the Object-Oriented Data Base is to provide our expert
system with a reliable storage for quality factor information. The Object-Oriented
Data Base obtains the commands (retrieve, store, etc.) from the Inference Engine (or
the DTMS). When it receives the co M'mands, the control of our expert system will
be passed to the Object-Oriented Data Base. After the commands are executed, the
control will be returned from the Object-Oriented Data Base to the Inference Engine
(or the DTMS).

After all the facts (in object forms) are stored in the Object-Oriented Data Base.
based on current quality factor value, one rule in the RS will be fired by the inference
Engine. This rule compares the user s expected quality factor values with the actual
quality factor values. If any of the actual quality factor values is smaller than the
user s expected corresponding quality factor value, one of the QIRs in the RS will
be invoked and the control will be passed to the DTMS for quality improvement
suggestions. If all the design quality factor values (from the Object-Oriented Data
Base) are greater than the user's expected corresponding quality factor value, one of
the UGSRs in the RS will inform the developer that the goal of software quality has
been achieved and the operation will stop.

After the DTMS is invoked by the Inference Engine, the DTMS will activate the
dependency-directed backtracking for quality improvement suggestions. Based on
the data objects stored in the Object-Oriented Data Base, the dependency-directed
backtracking searches the cause (a metric element) for low quality factors. Each time
the dependency-directed backtracking is invoked by the DTMS, a metric element that
causes low quality factors will be found. After all the metric elements resulting in low
quality factors are found, control will be returned from the DTMS to the Inference

17

Engine and quality improvement suggestions will be stored in the Object-Oriented
Data Base.

Tile Inference Engine informs the developer of the quality analysis of the software
product during each phase. Based on the quality improvement suggestions in the
Object-Oriented Data Base, if the quality factor values are not satisfied, the Inference
Engine will ask the developer to modify the design.

3.2 Characteristics of Our Expert System

Our expert system will have the following characteristics which will make our expert
system capable of handling large scale software development projects:

" Expressiveness: Traditionally, the knowledge for software development process
is usually stored in a data base using development tools. The tools are usually
written in procedural languages. In our system, the knowledge for software
development and software quality assurance is represented by rules and facts.
The concepts of rules and facts can be understood and modified more easily
than tools written in procedural languages. The project manager can easily
understand what a fact is and what a rule is.

" Expandability: The situation-action knowledge for software development and
software quality assurance is expressed in the form of rules. Knowledge with
structured properties are represented as facts. The project manager can expand
this knowledge by incorporating his/her own knowledge in the expert system
and use the expert system to assist him/her during the software development
process.

" Granularity: In our expert system framework, many kinds of objects are pro-
posed. Each one gives a different level of details of the whole software product
and consequently gives us abstractions of the data structure by hiding details.
Therefore, the activities for performing software quality assurance are more
manageable and reliable. For example, factors, criteria, and metrics represent
three kinds of granularity objects. A project manager only needs to consider
what the software quality (i.e., quality factors) is, while a quality engineer has
to consider the detailed structure of the quality hierarchy, factors, criteria, and
metrics.

" Different kinds of inference: 1) Deduction is used in rules and meta rules. 2)
Direct connection is used in structured objects. 3) The dependency-based truth
maintenance system is used to support non-monotonic inference. These three in-
ference methods allow the software developers to present their inferential knowl-
edge for software development and software quality assurance easily. Thus, the

18

inference engine of our expert system for software quality assurance is more
powerful.

" Integration: The situation-action rules act as a monitor to control the progress
of the product for project managers. For example, using this mechanism, the
AMS can be activated automatically. Many tools can be integrated with this
system, e.g., planning packages, administration packages, and packages that
track the discrepancy reports. By adding rules in connection with develop-
ment tools. the development tools can be automatically invoked at appropriate
time. Integration of all the tools through situation-action rules allows project
managers to have the whole picture of the status of the project.

" Well-defined quality status: Information describing the quality status of the
software product is incorporated into this framework. Any low quality parts
of the product can be located as soon as possible. The project manager can
get an early warning for any low quality parts during the software development
process.

" Interactive Capability: At any time of the software development process, the
project manager can modify the software quality assurance activities by mod-
ifying the rules. This interactive capability provides the managers with the
control over the course of software quality assurance activities.

19

Chapter 4

Object-Oriented Data
Representation for SQA

Activities of the software development cycle generate much data (facts), including:

" Documents/programs: Data items in Software Life Cycle Support Environment
(SLCSE) [6], such as requirements, functional specifications, designs, user man-
uals, source codes, and object codes;

" Internal forms of programs: control flow graphs, data flow graphs, program slice
and ripple effect information;

" Test data: input to and expected output from tests;

" Software quality information: quality factors, quality criteria, and quality met-
rics.

Each piece of the data is a development item generated during the software devel-
opment cycle. The idea to have a data base is to have all the information generated
at the specification, design, implementation and testing phases available to the main-
tenance personnel in a complete, structured and traceable form. In this project, we
emphasize the usage of software quality information. The same techniques can be
applied to manage and manipulate other information.

There are four levels of software items in the software quality framework [1.6,
44], which are SYS (system), CSCI (computer software configuration item), CSC
(computer software component) and CSU (computer software unit). We call the
items in these levels SYSLIs (SYS level items), CSCILIs (CSCI level items), CSCLIs
(CSC level items) and CSULIs (CSU level items). System Specification documents,
System Design documents, etc. are software document items which belong to objects

20

in the SYS level. Software Requirement Specification documents, Software Design
documents, etc. are software document items which belong to objects in the CSCI
level. Memory and processing time allocation are described for each CSC in the
Software Design documents. The description for each CSC appears as a paragraph in
Software Design documents. The basic coding unit is in the CSU level. Each software
code module represents a CSU.

In the software quality framework [1], quality factors are measured at the end of
each phase. The quality information will be acquired from different levels of software
items. The quality factor information represents the integrated quality information
for the software product at the end of each phase. The detailed acquisition stages for
different levels of software items are described in Figure 4.1.

4.1 Advantages of Object-Oriented Data Repre-
sentation

In the data base and knowledge base community, data (fact) models can be classified
into two categories: set theoretic models and graph theoretic models. A typical
example for set theoretic models is the relational data model. A typical example for
graph theoretic models is the object-oriented data model.

The relational data model provides set operators: union, set difference, projection,
cartesian product, and selection. The basic unit in the relational data model is a
relation. We have the operators, selection and projection, to manipulate a relation,
and the remaining operators work on inter-relations. The most important benefit
of using the relational data model is that it provides a very simple but expressive
model. Relational systems generally perform well when accessing a field in all tuples
of a relation, but perform poorly when accessing individual records. This is because
set-oriented operators can express full-fledged power on a set instead of a record.
One of the derived operators, natural join, is used very often for inter-relations. The
natural join is applicable only when both two relations have columns that are named
by the same attributes. The natural join operation is generally performed poorly
because it has to match the same values in the same attribute of two relations.
Matching is a time-consuming job, so relational systems are generally perform poorly
on inter-relation operations.

The concept of object-oriented representation has been developed during the last
decade. It extracts the features from the Object-Attribute- Value representation, se-
mantic networks and frame based representation in the artificial intelligence commu-
nity. It also extracts the type concept from the programming language community. It
provides another dimension to overcome the deficiencies of the relational data model.
Instead of using matching such as in the relational data model, it provides direct

21

SRAD SRAI PD DD CUT CSCIT CSCIT SIT

X>

SRAD - SYSTEM REQUIREMENT ANALYSIS/DESIGN
SRA - SOFTWARE REQUIREMENT ANALYSIS

PD - PRELIMINARY DESIGN
DD - DETAILED DESIGN
CUT - CODING AND CSU TESTING

CSCIT - CSC INTEGRATION AND TESTING
CSCIIT - CSCI TESTING
SIT - SYSTEM INTEGRATION AND TESTING

SYS-SYSTEM

CSCI - COMPUTER SOFTWARE CONFIGURATION ITEM

CSC - COMPUTER SOFTWARE COMPONENT

CSU - COMPUTER SOFTWARE UNIT

Figure 4.1: Phase and level relationship for software development.

22

connectivity between a single object and many related objects. Because of this fea-
ture. it can access individual records very fast. Its inter-object operation is through
direct connectivity instead of matching. It runs faster than relational systems when
the number of inter-object (or inter-relation) queries is greater than that of the set
oriented queries. The major disadvantage of the object-oriented data model is that
it loses the powerful set operators.

A query is an action to retrieve the data (facts). In the software quality assurance
knowledge base, it seldom asks a query like "Find reliability factors of all the projects
in the knowledge base". Instead, it often asks a query like "Find the criteria of the
reliability factor in a project". We feel that we can exploit all the capabilities provided
in an object-oriented knowledge base and give users a unique view of software quality
information.

4.2 Features and Terminologies in the Object-
Oriented Representation

Traditionally, the Entity- Relationship (E-R) model is used as the conceptual data
model for the data base. Relational data model is used as an internal representation
for the data base in computer systems. Database Administrator should take the
responsibility for conversion from the E-R model to the relational data model. In
this section, we will discuss how an obj,-ct-oriented data model can play a role in the
conceptual data model as well as internal computer representation. No conversion
between the conceptual data model and the internal representation is required for
an object-oriented data representation. The basic constructs for the E-R model are
entity and relationship. In an object-oriented data model, we have more constructs,
such as IS-A, PART-OF, etc. which will be discussed in detailed in this section.

The ideas, such as 15-A, PART-OF, default values and procedure attachment in
our object-oriented representation is used in Artificial Intelligence. The ideas, such as
abstract data types, hierarchical types (type and subtype), and instance-of, are from
object-oriented programming languages. With these features, it is easy to organize a
large amount of knowledge into a hierarchical and structured knowledge base. It is
more complicated than the Object-Attribute-Value structure mentioned before. The
loss of simplicity in the object-oriented representation may complicate the implemen-
tation of inference engines and knowledge acquisition routines. However, it is easier to
express a complex and highly structured collection of facts and relationships. This is
the reason that the object-oriented data model is used as a representation for software
quality information.

23

The term object represents a software component having a hidden state and a set
of operations or capabilities for transforming the state. Although the term "object-
oriented" has been most closely associated with object-oriented programming lan-
guage, like Smalltalk [45], the concept "object" is used very often in semantic net-
works and frames. A frame in frame based representations, and a node in semantic
networks are similar to an object here. An object is the primitive element of an
object-oriented system.

Aessages represent interactions between the objects. Every object is an instance
of a class. All instances of a class have the same message interface; the class describes
how to carry out each of the operations available through that interface. Each mes-
sage is processed by an operation which is described by a method. A method is a
procedure which describes how to perform the operation. The encapsulation of slots
(variables) and methods is similar to abstract data type in programming languages,
like Ada. They can provide a modular design for software product. Some object-
oriented programming languages still use function calls instead of message passings.
Because the message passing method can provide a more modular structure than the
function call method, we will use it in this project.

The slots of an object are determined by the class of the object. Each slot can hold
one value. The slot options for each slot can specify additional functionalities, such as
default values, pointers to its sub-objects (PART-OF), and procedure attachments.
As we mentioned before, slots in frames have the same abilities as slots in objects.

A class is an object that describes the implementation of one or more similar ob-
jects. A class object determines the structure and behavior of a set of other objects,
which are called its instances. Classification/Instantiation is a term to describe this
kind of abstraction in which an object class is defined as a set of instances. Classifi-
cation represents an instance-of relationship between an object and its class. When
a class is defined to have a slot with default-value slot option, every object in this
class will inherit this default value defined in this class.

A subclass is a class that inherits structure (slots) and behavior (methods) from an
existing class. A superclass is the class from which slots and methods are inherited.
Hence, if A is B's superclass, B must be A's subclass. The relationship between
superclasses and subclasses is called generalization/specialization. A subclass must
provide a new class name for itself, but it inherits the slot declarations, slot options,
and methods of its superclass. Methods can be added or overridden to subclasses,
but slots can only be added to subclasses. The subclass concept described here is
similar to hierarchical types (type and its subtypes) in programming languages. A
class hierarchy represents the IS-A relationship between a superclass and its subclass.

Composite object is composed of two or more objects. Their existence depends on
the existence of their constituent objects. The composite object represents the aggre-
gation/decomposition concept. A composite object hierarchy captures the PART-OF
relationship between parent class and its component classes. A composite object has a

24

single root object, and the root object references multiple child objects, each through
a slot.

Procedure attachment is built through the slot option for a slot. Fetching or
storing a value in the slot causes the attached procedure to be invoked. This feature
lets a procedure constantly monitor the value in the slot. It allows us to set constraints
on the value in the slot, propagate the changes to other objects, or other activities.
These can all be specified through the attached procedures. The implementation
of Truth Maintenance System (TMS) that will be described later is based on this
feature.

4.3 Objects and Classes

In each phase of the software development cycle, each software component at each
level has its own software quality factors, criteria, and metrics. There are the following
four classes of objects in our data base:

" Information Item (II): Each software component at each level is represented
by an object of the II class. For an object of the II class, it will point to its
own quality information objects, its documents and its subcomponents. For
an object in II class in the SYS level, it will consist of all the documents that
describe the whole system, e.g. System Specification documents, System Design
documents and Interface Requirement documents. A SYS level II object also
consists of the names of its subcomponents in the CSCI level. Figure 4.2 is an
illustration for this hierarchy.

* Development Phase Item (DPI): For an object in the DPI class, its phase of
the software development cycle and software quality factors are represented. A
software product will go through different phases of the software development
cycle. An information item will have several development phase items as its
quality information sub-objects.

" Quality Factor Item (QFI): Each object in the QFI class has its corresponding
quality-criterion-item sub-objects. The value of the factor is stored here. An
object in the DPI class has several QFI objects.

" Quality Criterion Item (QCI): Each object in the QCI class has its own metrics
and the value of the criterion. This is the lowest level of the four classes;
that means it has no sub-objects. Figure 4.3 shows an example for quality
information hierarchy.

The detailed description of each class for their slots and method is given as follows:

25

SYS SYSTEM LEVEL

CSC1 CSCIn CSCI LEVEL

I 7 CSC LEVEL
CSCII ... CSC1m CSCn1

CS 11 C l CS nCSU LEVEL

Figure 4.2: Software components hierarchy.

Cs 11 INFORMATION ITEM/ ...
CSC11-SRA CSCI1 PD DEVELOPMENT PHASE

ITEM
OSC1l SRA Re QUALITY FACTOR

V ITEM

CSCI1_SRAReAC QUALITY CRITERION
ITEM

Figure 4.3: Software quality information hierarchy.

26

* Information Item (II)

CLASS II

(slot)Name: name of this object.
(slot)Body: a set of pointers in which each pointer

points to the program or document body
(only the CSU level components have
program body, while other level objects
have document).

(slot)Subcomponents: a set of pointers in which each pointer
points to this object's components. It
is empty for objects at the CSU level.

(slot)Level: one of the items in (SYSTEM, CSCI,
CSC, CSU).

(slot)Phases: a set of pointers in which each pointer
points to a CSCI level object's development
phase items.

(method)Get-subcomponents get all the names and level
information for this object and its
subcomponents.

(method)Get-quality-information: get all the quality factors of
this object.

* Development Phase Item (DPI)

CLASS DPI

(slot)Development-phase-name: name of this object
(slot)Factor-information: a set of pointers in which each

pointer points to this
object's quality factor items.

(method) Get-factor retrieve a quality factor.
Which factor to be retrieved depends on
the message this object receives. The
message must be one of the thirteen
factors.

27

" Quality Factor Item (QFI)

CLASS QF!

(slot)Quality-factor-name: name of this object.
(slot)Value: value for this factor.
(slot)Criterion-information: a set of pointers in which each pointer

points to object's quality
criterion items.

(method)Get-and-calculate get all the criteria for
this factor and
calculate the factor value.

" Quality Criterion Item (QCI)

CLASS QCI

(slot)Quality-criterion-name: name of this object.
(slot)Value: value for this criterion.
(slot)Metric-information: a set of metric values
(method)Collect-metric collect the values of

the metrics. This method calls AMS
to collect metrics.

(method)Get-and-calculate get all the metrics of the
criterion and calculate it.

In the software quality framework[l], each factor or criterion has a formula to
calculate its value. The same criterion for different software products will use the
same formula to make the calculation. By putting this formula into a class, all
the instances of this class can share the same formula. As we mentioned before, the
instances of the same class will have the same structure and behavior. The modularity
of the data representation will be strongly supported by this design.

Another benefit of this design is that it uses the composite object concept, where
a composite object consists of sub-objects. When the Get-factor is invoked, it will
automatically invoke Get-and-calculate for each of the sub-objects which are in its
Factor-information slot. This kind of granularity design will facilitate the maintenance
of the knowledge base.

In the software quality framework [1], the equations for calculating factor values
from criteria in different development phases are the same. For example, the reliabil-
ity factor value is obtained from the average of the accuracy, anomaly and simplicity,

28

regardless whether it is for the SRA. PD, or DD phase. What happens to the expert
system framework, when the software quality framework is changed, such as differ-
ent equations are used in different development phases? A simple way to do this is
to create subclasses of QFI for each development phase. Each subclass will inherit
the structure (slots) of QFI and add its own Get-and-calculate (equation calculation)
method to the subclass. In the object-oriented approach, methods are overridden in
the subclasses if the names of the methods are the same as the names of methods in
their superclasses. The objects in the subclass will be calculated using the new equa-
tion in the subclass instead of the equation in QFI. With the ability provided in the
object-oriented approach, we have a more flexible way to handle future enhancement.

29

Chapter 5

Quality Assurance Activities with
Rules

In Chapter 4, we have discussed how the knowledge in our expert system framework
(quality information from the AMS) is represented in the Object-Oriented Data Base.
In this chapter, we are going to explore another component of our expert system
framework, namely, the Inference Engine. In this chapter, we are going to use logical
rules as the inferential knowledge and a set of meta rules as the control portion of the
inferential knowledge to show how the quality of a software product can be assured
using our knowledge-based system.

The application of logical rules is the most common inference strategy used in
knowledge based systems. When A is known to be true and if there is a rule states,
"If A then B", then it is valid to conclude that B is true. The logical rules are chosen
to be the inference strategy here because they are simple, so reasoning based on them
is easily understood. The use of logical rules also makes the change of the inference
strategy easy because a user of the syf em may ea-ily modify the rules available in
the inferential knowledge. In Section 5.1, the rules by converting from the quality
framework metric elements will be described.

The control portion in the inferential knowledge generally should solve the two
basic problems [14]: First, the knowledge based system must have a way to decide
where to start. Rules and facts usually reside statically in the knowledge base. The
Inference Engine must decide where the reasoning process is to begin. Second, the
inference engine must resolve conflicts that occur when alternative lines of reasoning
emerge. Therefore, in Section 5.2, we are going to use meta rules as the control
portion of the inference engine to control where the system is to start and which rules
are selected to be executed.

30

5.1 Rule Set (RS)

The Rule Set (RS) in this system are stored in the knowledge base. Based on available
data, the RS will provide design suggestions, invoke the Dependency-Based Truth
Maintenance System (DTMS) to evaluate designs, inform the users of satisfied results.
or provide improvement suggestions. Users of this system can add, delete or update
the RS according to their needs. The RS will be centrally controlled by the Inference
Engine based on the meta rules in the Meta Rules (MR) that are described in the
next section.

There are basically the following five categories of rules in the RS:

" Quality Guideline Rules (QGRs):

Quality Guideline Rules (QGRs) are used as quality improvement guidelines.
During the software development process (including software requirement anal-
ysis phase, preliminary design phase, detailed design phase, coding and CSU
testing phase, CSC integration and testing phase, CSCI testing phase, and sys-
tem integration and testing phase), the design decisions will be guided by the
QGRs to assure high quality design. These rules serve as an assistant in making
design decisions at each software development phase. For example, before the
software requirement analysis phase, how to incorporate the accuracy, anomaly,
and simplicity of the requirements document to the reliability factor; before
the detailed design phase, how to incorporate completeness, consistency, and
traceability of the requirements document to the correctness factor.

* Quality Monitoring Rules (QMRs):

Quality Monitoring Rules (QMRs) are rules for monitoring the quality informa-
tion for each quality factor/criterion/metric relation. Even if a user's expectcd
quality is achieved, some metric values may still be lower than the expected.
The QMRs will send a warning message to the user and the Quality Improve-
ment Rules (QIRs) will be invoked to use the DTMS for quality improvement
(the QIRs are described later in this section).

" Automatic Quality Collection Rules (AQCRs):

These rules help program developer to evaluate software quality at key mile-
stones. After all the metric values are collected, the AQCRs invoke factor/criterion
calculation program in Class II to compute factor/criterion values. These rules
are useful after the metric values are collected automatically. These rules are
invoked first by the Inference Engine using some meta rules in the Meta Rules
(MR) at each development key milestone. For example, anomaly management
should be evaluated at software requirements review, preliminary design review,
detailed design review, and unit level during coding review.

31

" User's Goals Satisfied Rules (UGSRs):

User's Goals Satisfied Rules (UGSRs) work similar to the Quality Monitoring
Rules. If the user's expected quality factors are achieved and the design does
not have metric values lower than the critical values, the UGSRs inform the
user that the goals have been achieved.

* Quality Improvement Rules (QIRs):

When the design at some phases of the development process cycle is detected
to have low quality values, the DTMS is invoked for design evaluation and the
Quality Improvement Rules will be used for quality improvement.

In this chapter, we are going to elaborate the Quality Guideline Rules (QGRs)
to show how these rules are derived and used in our expert system framework. As
mentioned in Chapter 2, software quality factors are represented by sets of criteria,
each of which is represented by one or more metric elements. Most of the metric
elements are evaluated using questionnaire (i.e., checklist) format. There are two
basic forms of questions. In one form, the user can answer either "Yes' or "No . This
form of questions usually checks the existence of some characteristics that the software
product has. The characteristics may be in any phase of the software development
cycle.

In another form, a numeric value is expected to be filled. This form of questions
comes either as a pair of questions or single question with a numeric value as its
answer. For the pair of questions, the quotient of these two values is used toward
the final computation of the criterion and factor values. For example, in the anomaly
management (AM) questionnaire, there are questions for checking the error-tolerance
code such as: a) How many error conditions are required to be recognized? b) How
many recognized error conditions require recovery or repair?. The value of b div*
a (div* is either /, divO, or divl) is then used toward the quality framework met-
ric equations to compute the anomaly management criterion, which then is used to
compute the reliability factor of the software quality. div* is either /, divO (division,
return 0 if divisor is 0), or divl (division, return 1 if divisor is 0). For those single
questions, there are quality framework metric equations defined for calculating the
metric values. Those quality framework metric equations use regular mathematical
operators like: +, - , *, /, divO, and divl. The quality framework metric equation
also supports two functions: ABS and AVE. The ABS function returns the absolute
value of the single argument and the AVE function returns the average of a list of
elements. There are also other forms of questions involving quality framework metric
equations, which can be converted into rules accordingly.

Finally, any criterion is computed using the operators, functions and quality frame-
work metric equations as defined in the last paragraph. For those questions with "Yes"
or "No" as their answer, if "Yes" is the answer, a numeric value 1 is assigned to the
metric, otherwise, 0 is assigned to the metric. All the criteria from a software factor
are then assigned the same weight and we will find the factor value by multiplying

32

the weight with each criterion value (or simply taking the average of all of the values
of the criteria to be the value of the factor). In this scheme. the factor values are
obtained at the end of each development phase.

One question ("Yes" or "No" question) for each criterion is chosen from the metric
element sets to illustrate the software-oriented view of the software product in the
next paragraph. In [12]. a set of metric questions has been developed, and under each
criterion there are questions for each development phase.

Accuracy (AC) Are there quantitative accuracy requirements for all applicable out-
puts associated with each mission critical system function?

Anomaly (AM) Are there requirements to check all critical output data before final
outputting?

Application Independence (AP) Is the unit free from computer architecture ref-
erences?

Augmentability (AT) Are all variable dimensions and dynamic array sizes defined
parametrically for his unit?

Autonomy (AU) Are all processes and functions portioned to be logically complete
and self-contained to minimize interface complexity?

Commonality (CL) Are there requirements for communication with other sys-
tems?

Completeness (CP) Are the flow of processing (algorithms) and all decision points
(conditions and alternate paths) in that flow described for all system functions?

Consistency (CS) Is there a requirement to standardize all design representations?
(For example, representing control flow, data flow.)

Distributedness (DI) Is a graphic portrayal (figures, diagrams, tables) provided
which identifies all software functions and functional interfaces in the system?

Document Accessibility (DO) Are current versions of all software documentation
related to the project, free from access control (i.e. any member of the current,
project or other projects may access a copy of any document)?

Effectiveness Communication (EC) Have performance requirements and limita-
tions for system communication efficiency been specified for each system func-
tion?

Effectiveness Processing (EP) Have performance requirements and limitations
for processing efficiency been specified for each system function? (For example,
flow time for processes, execution time.)

33

Ehectiveness Storage (ES) Have performance requirements and limitations for
storing data to efficiently utilize primary and secondary storage been specified
for each system function?

Functional Scope (FS) Are there requirements to construct functions in such a
way to facilitate their use in other similar system apphcations?

Generality (GE) Is "ach unit free from machine-dependent operations?

Independence (ID) Is there a requirement to use a standard subset of the imple-
mentation language(s) for the system?

Modularity (MO) Are all software functions and CSCIs developed according to
structured design techniques?

Operability (OP) Have the operating characteristics of the system been specified
(i.e. the normal and alternate procedures and actions performed by the system)?

Reconfigurability (RE) Are there requirements to ensure communication paths to
all remaining nodes / communication links in the event of a failure of one node
/ link?

Self Descriptiveness (SD) Has the specific standard been established that each
unit prologue contain the unit's function, author, version number, version date,
inputs, outputs, algorithms, assumptions and limitations?

Simplicity (SI) Are there diagrams identifying all CSCI functions in a structured
fashion? (For example, top-down hierarchical.)

System Accessibility (SS) Are there requirements to control user input/output
access in the system? (For example, user access is limited by identification and
password checking.)

System Clarity (ST) Is the unit interface established solely by arguments in the
calling sequence parameter list?

System Compatibility (SY) Does the design use the same I/O transmission rate
as the interoperating system(s), in accordance with the specified requirements?

liraceability (TC) Is there a table(s) tracing all of the CSCI's allocated require-
ments to the parent system or subsystem specification(s)?

Training (TN) Are there requirements to provide lesson plans and training mate-
rials for operators, end users, and maintainers of the system.

Virtuality (VR) Are the system implementation details transparent to the user?

Visibility (VSOB) Are all specified performance requirements of the CSCI to be
tested?

34

Some of the questions in [12] requiring numerical values are listed as follows: (For
those questions forming a pair, we want to maximize the quotient of the two values;
and for those single questions, we want to maximize the value to its answer.)

" a) How many instances of different processes are there which are required to bL
executed at the same time?
b) How many instances of concurrent processing are required to be centrally
controlled?

" a) How many error conditions are required to be recognized?
b) How many recognized error conditions require recovery or repair?

" a) How many identified data items are documented with regard to their source,
meaning, and format?
b) How many data items are identified?

" a) How many input parameters can the users "self describe" along with the
parameter value?
b) How many total parameters must the user input?

For the above questions, assign the value of b div* a to some metric element; if
b/a < 1, then "No" is the answer, otherwise "Yes" is the answer. Checklists from
the quality factor-criterion-metric element sets in different phases of the software
development cycle are converted into rules guiding the design of the software product.
There are two basic forms of rules converted from the metrics elements. In general,
the two types of questions discussed previously have the following two formats:

1. Are there <functions> [on <components>] at <milestoneX>?

2. a) How many entities are there to perform <function-A>
on <component> ?
b) How many entities are there to perform <functionB>
on <component> ?

The first type of questions are concerned with the existence of certain important
considerations during the development of the software product. Each factor con-
tributing to the software quality depends upon a number of quality functions, and
hence we would like to have the software product process as many such functions as
possible. The second type of questions uses the quotient of the two questions asked

35

to be the value of the metric element value, and hence we want to maximize the
answer of the second question. Both types of rules can be executed in various phases
of the software development cycle. In order for those rules to be executed, the user of
the system must provide an indication of which milestone is the development process
currently at. In this way, different milestones will trigger different types of rules to
be execute. They are converted into rules having the following format:

1. If <functions> are not presented [on <components>]
at <rnilestone_X>,
Then add <functions> to that component.

2. Maximize the entities in a component at <milestoneX> performing
<functionB> while maintaining the entities at <milestoneX> performing
<function-A>

These rules when converted from the metric element questions in [12] will be
stored in the knowledge base to provide the software developer guidelines to build high
quality software. Some of the Quality Guideline Rules (QGRs) providing guidelines
to increase the reliability value of the software being developed during the software
requirement analysis phase are given below:

In the accuracy criterion (AC) the questions: "Are there quantitative accuracy
requirements for all applicable inputs associated with each mission critical CSCI func-
tion?" and "Are there quantitative accuracy requirements for all applicable outputs
associated with each mission critical CSCI function?" can be converted into the
following rules:

AC1.4b If there are no quantitative accuracy requirements for all applicable inputs
associated with each mission critical CSCI function, then add quantitative ac-
curacy requirements for all inputs.

AC1.5b If there are no quantitative accuracy requirements for all applicable out-
puts associated with each mission critical CSCI function, then add quantitative
accuracy requirements for all outputs.

In the amonaly criterion (AM) the questions: "In how many instances are differ-
ent functions allowed to execute at the same time? and In how many instances is
concurrent processing centerally controlled?" and "How many error conditions are
identified? and How many identified error conditions are provided with processing
instructions for recovery or repair of the error?" can be converted into the following
rules:

36

AM1.lb Maximize the number of concurrent functions that are centrally controlled.,
while maintaining the number of concurrent functions in the software require-
ment analysis phase.

AM1.3b Maximize the number of identified error conditions that are provided with
processing instructions for recovery or repair of the error, while maintaining the
number of error conditions being identified in the software requirement analysis
phase.

In the simplicity criterion (SI) the questions: "Are there diagrams identifying all
CSCI functins in a structured fashion?" and "Are there requirements for a program-
ming standard?" can be converted into the following rules:

SI1.lb If there are no diagrams for identifying all CSCI functions in a structured
fashion, then add diagrams in a top-down hierarchical during the software re-
quirement analysis phase.

SI1.9b If there is no programming standard specified during the software require-
ment analysis phase, then specified some programming standards for the re-
quirements.

The notation of AC1.4b means this rule is converted from the fourth question
related to requirement analysis phase in the Accuracy (AC) criterion 1 as appeared
in [12].

5.2 Meta Rules (MR)

As we mentioned at the beginning of this chapter, the control portion of the Inference
Engine should decide where to start and resolve conflicts that occur when alternative
lines of reasoning emerge. There are usually a list of actions with temporal infor-
mation constraining the order of actions in the quality assurance activities. Since
there are many quality factor/criterion/metric relations, there must exist some ways
in controlling what action is to be taken. In the software quality assurance activi-
ties, the goal is to have high-quality software product. The quality (measured by 13
quality factors and 29 criteria) of the software product is measured by metric element
sets which have the questionnaire as the metric elements. To control which quality
factor/criterion/metric is most important, we will have some meta rules in assisting
the developer to make decisions.

37

A meta rule is the knowledge about knowledge itself. This knowledge at meta-
level controls how the quality assurance activities are going to use the knowledge to
achieve their goal. In developing software, there are three meta rules in Meta Rules
(MR) that will help the developer to choose a rule from the Rule Set (RS) to be
applied next. The first kind of meta rule from the MR will be a rule to control the
invocation of rules to be activated. This meta rule is used in controlling quality rule
invocation at each milestone of the development process. The Rule Set (RS) is used
for the system component interactions as explained in Chapter 3. The second meta
rule from the MR is concerned with the usefulness of a rule, and is used to tell the
developer whether a particular rule is useful in improving the software quality. The
third meta rule from the MR is concerned with the temporal ordering among the rules
to be chosen. These rules are used to select which quality rule is to be used. They
are especially useful for selecting the Quality Guideline Rules (QGRs) described in
Section 5.1. The following are the three meta rule formats:

Meta-Rulel:

When <some-milestone> is reached,
Invokes Automatic Quality Collection Rules,
Quality Monitoring Rules,
Quality Improvement Rules, and
User's Goals Satisfied Rules.

The first meta rule states that at each development milestone (i.e., after the
software requirement analysis phase or after the detailed design phase), the Automatic
Quality Collection Rules (AQCRs) and the Quality Monitoring Rules (QMRs) should
be invoked to collect and evaluate the metric values. The Quality Guideline Rules
(QGRs) should be invoked between every two software development phases to provide
quality improvement guidelines. If the quality values are lower than what we are
expected, the Quality Improvement Rules (QIRs) should be invoked or User's Goals
Satisfied Rules (UGSRs) should be invoked to indicate goals achieved.

Meta-Rule2:

When <condition(s)> is true,
If rules do{not} have <characteristics>,
Then they will be x % certain they are useful.

Meta-Rule3:

38

When <condition(s)> is true.
Rules which do{not} have <characteristicsX> should be used <order>

with x c certain than
Rules which do{not} have <characteristicsY>.

Meta-Rule2 and Meta-Rule3 are useful to resolve conflicts when alternative lines
of rea.,iiin, enleige. Vhc., we d,.'elop e large s,_ale softwvare system, the Rule 'et
(RS) for that software system is generally very large. Choosing the best rules from
the RS to be applied can depend upon Meta-Rule2 and Meta-Rule3. For Meta-Rule2
and Meta-Rule3, <condition(s)> is a boolean expression that this meta rule has to
be satisfied, <characteristics> is a set of characteristics that the meta rule has, and
<order> is a partial ordering which indicates the ordering of the rules from the RS
to be chosen first. A certainty factor x % can be included by the project manager to
change the importance of believe depending on different situations.

5.3 Examples in the Quality Assurance Activities

Meta-Rulel is used by the Inference Engine to control which rule in the Rule Set is
to be invoked. For example, the Inference Engine will select a rule in the Quality
Guideline Rules (QGRs) using Meta-Rulel to provide design guidelines before each
major phase of the software development cycle. After each milestone in the software
development cycle, the Inference Engine will select a rule from the Automatic Quality
Collection Rules (AQCRs) to collect quality information using Meta-Rulel. The
Inference Engine will execute the rules selected from the RS and send a command
to the Object-Oriented Data Base to retrieve quality factor information from the
AMS. The Inference Engine will also select a rule from the Quality Monitoring Rules
(QMRs) using Meta-Rulel to constantly monitor the current software product quality
values using the information stored in the Object-Oriented Data Base. Whenever the
system detects a low quality value, the Quality Improvement Rules (QIRs) in the RS
will be selected by the Inference Engine to activate the DTMS. Otherwise, the User's
Goals Satisfied Rules (UGSRs) in the RS will be selected by the Inference Engine to
inform the user that the goals of the software quality have been achieved.

For example, assume that we are at the detailed design phase. After the Auto-
matic Quality Collection Rules and Quality Monitoring Rules are being executed, a
message "get-factors" is sent to the CLASS DPI to collect the software quality factor
values. Let us also assume that there is a module with the reliability value of 0.75
which is lower than the expected reliability value of 0.95. This low reliability value
does not satisfy the user's expected reliability value, and hence a rule in the Qual-
ity Improvement Rules is executed to call the Dependency-Based Truth Maintenance
System (DTMS) for quality improvement.

39

In another example, before the software requirement analysis phase., we have de-
cided that one of the most important goals is to develop a reliable requirement speci-
fication. Using Meta-Rule2, we can decide which rule in the Quality Guideline Rules
(QGRs) is more useful than others for improving the reliability factor. Using Meta-
Rule3, we can determine the order of different rules in the Quality Guideline Rules
(QGRs) to improve the reliability. Since the reliability depends upon the Anomaly
Management, rules in the Quality Guideline Rules increasing the Anomaly Manage-
ment are imp,.,,ant. For cxample, using Mcta-Rule2, wc car.idtlirie the usefulness
of the following rules in the Quality Guideline Rules (the certainty factor is assigned
0.9 indicating that it is very likely the rules will be useful):

Under the condition that we want to increase the reliability,
If there are rules that can increase the Anomaly Management,
Then it is likely (0.9) that each of these rules will be useful.

Using Meta-Rule3, a partial ordering can determine which rule from the Quality
Guideline Rules should be applied first. The following rule indicates that when we
want to increase the reliability while the Anomaly Management (AM) is high, it is
likely (with certainty factor 0.8, assigned by the project manager) that we should
apply the rules to increase the Accuracy (AC) first.

Under the conditions that we want to increase the reliability
and that the Anomaly Management (AM) is high,

If (1) there are rules to increase Anomaly Management (AM),
(2) there are rules to increase Accuracy (AC),

Then it is likely (0.8) the second type of rules should
be used before the first type of rules.

40

Chapter 6

Dependency-Based TMS (DTMS)

In [46], it is shown that the system maintenance activity could be benefited greatly if
the knowledge of software development process has been captured and is used later
to reason about the consequences of changing conditions or requirements. After the
process knowledge for a design is recorded, if there is a need to make some designs that
are similar to some existing designs, designers may not have to repeat these similar
designs that were made by the original designers (possibly themselves). Designers
can just modify these existing designs to match the new requirements.

Early design knowledge can be more useful to the maintainer than the final code, in
which the effects of an early design decision may have become difficult to trace [47].
Without such a record, a maintainer may repeat the undocumented mistakes that
were made by the original designer (possibly himself) or may undo earlier unrecorded
decisions that are not manifest in the code.

6.1 Motivations for Using the DTMS

The progression of a single piece of software under development can be regarded
as a graph, in which the nodes are artifacts (data or modules), and the links are
derivation paths (design decisions). Artifacts are mutually related (based on some
design decisions). Design decisions can be represented as dependency relations.

There are three kinds of dependency relations. The first is a metric/criterion (or
criterion/factor) dependency relation. It exists between a metric and a criterion whose
value depends on the value of that metric (or between a criterion and a factor whose
value depends on the value of that criterion). For example, the value of the criterion

Anomaly Measurement depends on the value of the metric Error Tolerance/Control
(the value of the factor Reliability depends on the value of the criterion Anomaly

41

Measurement). The second is a data/module dependency relation. It exists between
a set of data and a module which is needed to manipulate that set of data. For
example, a sorting procedure is needed only when there is data that needs to be
sorted; that is, the existence of a sorting procedure in a program depends on the
unsorted data. The third is a phase/phase dependency relation which only occurs
between two modules which are in adjacent software development cycle phases. For
example, the sorting procedure in the detailed design phase depends on the sorting

cr_,ced're r the pr.lirn;nqrv derifrn nhoe. De,'elopment for the first dependency
relation will be discussed in this report, the other two dependency relations will be
discussed in the future.

The dependency relations are all persistent relations; that is, whenever they are
established, they will be there until users change their designs whereupon new depen-
dency relations need to be established. In order to represent the persistent relations
and efficiently rebuild dependency relations, hypothetical reasoning inference engines
are considered.

Hypothetical reasoning refers to solution approaches in which assumptions may
have to be made to enable the search procedure to proceed. However, later along the
search path, it may be found that certain assumptions are invalid and therefore have
to be retracted [21]. In our expCe L system, assumptions can be users' design decisions
or users' expected quality factor values.

This hypothetical reasoning can be handled in a variety of ways. The first ap-
proach is referred to as viewpoints [48], contexts, and worlds in different tools. This
approach reduces the difficulty of the computation by carrying along multiple solu-
tions representing different hypotheses in parallel. This approach will also discard
inappropriate hypotheses when they contradict the facts. Difficulty for this approach
is that it is not possible to have all different hypotheses (design decisions) tried for
a piece of software. Some software quality factors are mutually conflicting, and they
may not be improved at the same time. Another approach has been referred to by a
name like nonchronological backtracking. It keeps track of the assumptions that sup-
port the current search path and backtracks to the appropriate branch point when the
current path is invalidated. A related capability is truth maintenance, which removes
derived beliefs when their conditions are no longer true. Two primary features of the
TMS-persistent relations representation and dependency-directed backtracking-make
it possible to represent and update the persistent dependency relations of metric and
criterion (or criterion and factor). Hence, the truth maintenance system is chosen for
our expert system.

6.2 Definitions

The data objects of our expert system are mutually related; there is a dependency
relation between every two related data objects, an object and its consequent. The

42

valuc attribute of an object is affected by the value attribute of its antecedent, i.e. the
quality value of an object is either inherited or manipulated from the quality value of
its antecedent. For example, X and Y are both objects and Y is X's antecedent. Some
value attributes of X are inherited or manipulated from the values of Y. Hence, the
values in object slots can be manipulated and results ripple throughout the logical
structure of the system. Such values are called active values.

Definition 1. Ar. actit,e object is an object whose value attribute affects another
object's value attribute.

Definition 2. A passive object is an object whose value attribute is affected by another
object's value attribute.

In our expert system, a passive object has at least one active object, and an
active object may affect more than one passive objects. Each data object of our
expert system may be a passive object or an active object or both.

The organization of objects of our expert system can be viewed as an abstraction
mechanism. Those abstraction mechanisms that are considered in this subsystem are:
generalization/specification, and aggregation/decomposition. The first abstraction
mechanism generates a taxonomy of classes known as an IS-A hierarchy. The second
abstraction mechanism captures the PART-OF relationship between a parent class
and its component classes. However, the PART-OF relationships of our expert system
are not quite the same as the traditional ones, e.g. fingers PART-OF hands. Here,
the A PART-OF B means not only A is part of B, but also B's value is derive from
A. For example, Anomaly Measurement PART-OF Reliability.

Thus, the other way of describing data objects of our expert system is that they
are bound together by either the IS-A relationship or the PART-OF relationship.
In this subsystem, the IS-A relationships exist between classes and subclasses. The
PART-OF relationships are used to represent the hierarchical relationships of software
quality factors.

Objects of our expert system have the inheritance feature. Therefore, when an
object is an instance of a class it inherits attributes from it. This object inherits
values from a class only when it has the same attributes as its class. In our expert
system, however, when an object (a component object) is PART-OF another object
(the parent object), the component object does not inherit attribute values from that
parent object. On the contrary, attribute values of parent object are derived from
the component objects. For example, A and B are both objects, and A PART-OF B.
A does not inherit from B. On the contrary, some of B's attribute values are derived
from A.

43

Definition 3. A Dependency-Based Truth Maintenance System (DTMS) is a system
which does dependency-directed backtracking and incrementally updates its
beliefs when dependency relations are modified.

Definition 4. A culprit represents a metric that lowers a quality factor value of the
software.

Definition 5. A ripple phenomenon is a phenomenon that a deficiency in the early
phase of the software development cycle affecting the product quality of the
later phase.

For a low software quality factor value, each time when our expert system is
applied, a culprit will be found. Our expert system can be iteratively applied to find
culprits for a software quality factor or factors.

6.3 DTMS Approach to Efficient Search

A simple example is used to show the efficient search that applied by the DTMS.

Let x, y, and z E {1,2). a = log(:), b = log(y), c = log(z), a $ b, and b 0 c.
Find valid solutions for this question.

The simplest search strategy (brute force) is exponential: Enumerate all the pos-
sibilities and try each one until a solution is found or all solutions are found. In this
example, there are 3 binary selections giving tentative solutions to test. ('YES' indi-
cates a valid solution and 'NO' indicates a contradiction). As each solution requires
3 computations, there are totally 24 computations required.

x= 1, y=1. z= 1, NO
x= 1, y= 1, z=2 NO
x= l, y=2, z= I YES
x= 1, y=2, z=2 NO
x= 2, y= 1, z= 1 NO
x=2, y= 1, z= 2 YES
x=2, y=2, z= 1 NO
x=2, y=2, z-=2 NO

The search space for the brute force search is:

44

(1) x=1
(2) x=1, v=1
(3) x-1, y=1, z= 1, NO
(4) x=1
(5) x =1, y=1
(6) x= 1, y= 1, z=2, NO
(7) x= 1
(8) x =1, y= 2
(9) x =1, y=2, z = 1, YES
(10) x= 1
(11) x =1, y= 2
(12) x =1, y=2, z = 2, NO
(13) x=2
(14) x= 2, y= 1
(15) x =2, y= 1, z = 1, NO
(16) x=2
(17) x =2, y= 1
(18) x =2, y= 1, z = 2, YES
(19) x=2
(20) x= 2 y= 2
(21) x=2, y=2, z=1, NO
(22) x = 2
(23) x = 2, y = 2
(24) x = 2, y = 2, z = 2 NO

Comparing with the brute force search, chronological backtracking requires the
additional machinery of a stack of variable bindings, but has better efficiency. The
expression order of this search is presented below. If the expression is a selection, then
try the first one; otherwise, evaluate the equation. If the expression is inconsistent,
back up to the most recent selection with a remaining alternative and resume process-
ing expressions from that point [36]. In this example, the search space of assumptions
is:

45

(1) x=--1

(2) x = 1, y=l
(3) x = 1, y= 1, z- =1 NO
(4) x= 1, y-- 1, z=2 NO
(5) x =1, y= 2
(6) x= 1, y= 2, z= 1 YES
(7) x =1, y =2, z=2 NO
(S) x 2
(9) x= 2, y I
(10) x=2, y 1, z= 1 NO
(11) x=2, y= 1, z=2 YES
(12) x= 2, y 2
(13) x=2, y=2, z= 1 NO
(14) x=2, y=2, z=2 NO

The extra machinery (a stack) for controlling the search is well worth it because
only 14 computations are required, while the brute force technique requires 24 com-
putations. The chronological backtracking is the central control mechanism of PRO-
LOG.

By checking the search space of the chronological backtracking, 8 out of the 14
computations are easily avoided:

Futile backtracking: Steps 4 and 14 are futile. When a contradiction is discovered,
the search should backtrack to an assumption which contributes to the contra-
diction, not to the most recent assumption made. For the contradiction found
in Step 3 (or 13), the contradictions depend on the values of x and y. The
selection of zE {1, 2) has no effect on the contradiction in Step 3 (or 13), so
Steps 4 (or 14) can be ignored.

Rediscovering contradictions: Step 10 is futile. When Step 3 is contradicted, the
backtracking strategy should have been determined that the contradiction de-
pended on v = 1 and z = 1. Therefore, Steps 10, which has the same values for
y and z should never have been tried.

Retrying inferences: The function computations of Steps 6, 7, and 9 to 14 are
unnecessary. Chronological backtracking erased the earlier computations, but
if the previous results have been remembered, each function computation would
only need to be computed once.

The dependency-directed backtracking [32] is a solution to avoid the above three
defects because it maintains records of the dependency of each inference on earlier
ones and records the reasons for contradictions (the no-good sets). When it encounters

46

a contradiction, it consults these dependency records to determine which selection to
backtrack to and records the no-good sets. Consider Step 3 as an example. When
the contradiction happens, the dependency records indicate that (x = 1. Y = 1) and
(y = 1, z = 1) contribute to the contradiction. Then the system can backtrack to the
most recent selection which actually contributed the contradiction.

Dependency records are bidirectional, linking antecedents to consequents as well
as consequents to antecedents. Thus, the problem of retrying inference is also avoided.
Therefore, if x = I is believed, a = log(x) is also believed. Whenever some assumption
is included in the current set, the dependency records are consulted to reassure the
previously derived consequents of that assumption. This can be done by storing them
in a data base. If they are not derivable from the current set of assumptions, they
can be marked as temporarily disbelieved. Besides, before any new assumption set is
added, it is checked to see whether it contains any known contradictions or not.

These techniques are the basis of all the TMSs. A scheduling strategy for the
problem-solver-TMS has been proposed in [49]. The scheduling strategy cannot only
solve the three defects, but also eliminate incorrect ordering problem. Therefore. it
can avoid Step 3 as well, which cannot be avoided by using the dependency-directed
backtracking. However, all possible assumptions need to be known before this schedul-
ing strategy is applied. This is not quite possible in software design.

It is important to note that all these strategies are ultimately equivalent. They
will find as many consistent solutions as pure enumeration. The purpose of all these
strategies is to improve efficiency without sacrificing completeness.

6.4 DTMS Algorithm

The purpose of the DTMS is to find the culprit(s), i.e. metric(s) that lowers the
quality of the evaluated design. The mechanism that the DTMS applies to find the
culprit(s) is dependency-directed backtracking.

Algorithm:

Step 1. Target Selection: If there are two or more quality factors that did not achieve
the expected standard, the user should pick up the target, one factor, according
to his preferences or design purposes, to ask for software quality improvement
suggestions.

Step 2. Invocation: The DTMS is invoked by the Inference Engine for verifying and
improving the software quality.

47

Step 3. Dependency-Directed Backtracking and Culprit Finding: The DTMS invokes
dependency-directed backtracking to find the culprit for the chosen quality fac-
tor.

Step 4. Improvement Suggestions Passing: Signal and pass software quality im-
provement suggestions to the Inference Engine.

Step 5. Users Actions: Users check quality checklists and correct errors. Then the
system quality is remeasured.

Step 6. Exit: Exit conditions of our expert system are based on the comparison of
the quality values with the expected quality values:

* Goal achieved: If all the quality values are larger than the expected ones,
then returns control from the DTMS to the Inference Engine.

" No major changes: Due to some fatal design errors, some software may
not be improved to achieve user's expected quality values. Therefore, after
a fixed number of iterations, if the difference between the quality factors
values of two adjacent versions of improved software is smaller than a
certain value, the system will stop making quality improvement suggestions
for that quality factor. If all the unsatisfied quality factors have been
processed, then our expert system will stop processing and inform the
Inference Engine of the software quality analysis.

" Iterative: If the above two conditions are not satisfied, go to Step 3.

The DTMS can be iteratively called by the Inference Engine. Each time the
DTMS is called, it invokes the dependency-directed backtracking and makes a design
improvement suggestion. Due to the potential contradictions inherent in some of
the software quality metrics, a software improvement suggestion may increase one
quality factor and decrease another quality factor at the same time. Fortunately, those
mutually conflicting factors are not absolutely conflicting (the amount of changes of
the increased quality factor is not as large as that of the decreased quality factor). By
iteratively choosing different quality factors as targets, the DTMS can help balance
conflicting factors of the software.

48

Chapter 7

An Integrated Example

In this chapter, we are going to give an example to illustrate how the expert system
would work based on our framework, which includes the Object-Oriented Data Base,
Inference Engine (consisting of the Meta-Rules and Rule Set), and the DTMS. This
example is to develop a software system to solve a set of linear system equations
using the Gaussian Elimination Method (GEM). In this example (GEM), only the
reliability quality factor is considered. The user's expected relability factor values
during the SRA (Software Requirement Analysis phase), DD (Detailed Design phase),
and CUT (Coding and CSU Testing phase) are all assumed to be 0.95. We are going to
show how the Quality Guideline Rules (QGRs) are used to provide design guidelines,
how the quality information is stored in the Object-Oriented Data Base, and how
the DTMS can find the culprits in the metric elements and provide improvement
suggestions.

Before the software requirement analysis phase, the Quality Guideline Rules (QGRs)
will be used to provide guidelines in writing the requirement specification for GEM.
Since only the reliability factor is used, the metric questions for the reliability fac-
tor during each development phase are given in Appendix A. Here, we will exercise
all the QGRs in the Accuracy (AC), Anomaly (AM), and Simplicity (SI) criteria as
described in Chapter 5. Those QGRs, when used, provide guidelines to improve the
reliability (of the requirement document in the software requirement analysis phase)
that can be summarized as follows [12]:

* Accuracy Criterion (AC)

- ACI (Accuracy) - There are statements in the requirement document,
which provide quantitative accuracy requirements for all applicable inputs,
outputs, and constants associated with each mission critical function. Ex-
isting mathematic library routines shall be planned for use in the CSCI,
which will provide enough precision to support accuracy objectives.

49

" Anomaly Criterion (AM)

- AMI (Error Tolerance/Control) - All concurrent processing should be cen-
trally controlled. All identified error conditions must provide processing
instructions for recovery or repair. Standard error handling routines shall
be provided such that all error conditions are passed to the calling function
or some software element. All instances of parallel/redundant processing
should be centrally controlled.

- AM2 (Improper Input Data) - All error tolerances should be specified for
all applicable external input data to the CSCI.

- AM3 (Computational Failures) - There should be requirements for de-
tecting (or recovering from) all computation failures, for range-testing all
loop and multiple transfer index parameters, and subscript values before
use, and for checking all critical outputs to verify that they are reasonable
before final outputting.

" Simplicity Criterion (SI)

- SI (Design Structure) - There should provide diagrams identifying all
CSCI functions in a structured fashion. Programming standard should be
established and used.

- S12 (Structured Language or Preprocessor) - There should be requirements
to use a structured language or preprocessor for implementation.

The requirement document written following the guidelines provided by the QGRs
is given as follows:

A mathematical function is needed to solve a system of linear equations. It
'is expected that the Gaussian Elimination method is used and the function
be implemented in a high level programming language like PASCAL. The
function takes a set of real coefficients (with 5 decimal points precision)
as input and a set of real values (with 5 decimal points precision) as
output. There are no more than 500 system equations. All constants used
inside this function have precision of 5 digits after the decimal point. All
subscripts must be range-tested. All output must be verified before final
outputting. Error conditions must be identified for invalid input/output
values and wrong system equation sizes.

The criteria and reliability values calculated by using the data in Table 7.1 are
given as follows:

Accuracy(AC) = AVE(AC1) = 1.00

50

AC AM SI
ACI 1.00 AM1 0.50 S11 0.67

AM2 1.00 S12 1.00

AM3 0.75 S13 N/A
AM4 N/A S14 N/A

AM5 N/A SI5 N/A
AM6 N/A S16 N/A
AM7 N/A J

Table 7.1: The metric values for the GEM example in the Software Requirement
Analysis Phase.

Anomaly(AM) = AVE(AM1, AM2, AM3, AM4, AM5, AM6, AM7) = 0.75

Sirnplicity(SI) = AI"E(SJ1, S12, SJ3 S4, SI5, S16) = 0.835

Finally, we calculate the reliability value (RL) after the software requirement
analysis phase as follows:

RL = AVE(AC, AM, SI) = 0.86

Now, we are going to show how the quality information is stored in the Object-
Oriented Data Base. Figure 7.1 is the quality information hierarchy for object GEM.
Figure 7.2 shows the obtained reliability quality information.

There are many CSCI level items for a large scale software product, hence there
are many objects in the Class II. In this particular example, there is only one object
(GEM) in the Class II. The "Body" of this object is the requirement specification.
The object GEM is shown as follows:

CLASS II
object
Name: GEM
Body: documents for this object
Subcomponents:
Level: CSCI
Phases: (GEMSRAT, GEMPDT, ...)

The software project GEM has to flow through the software development cy-
cle. Figure7.1 shows there are six objects in the Class DPI: GEMSRA, GEMPD,

51

GEM
Information
Item

GEMSRA GEM PDGEM DD GEM CUT GEM CSCIT GEMCSCIIT

Development

Phase

Item

Quality
GEM_ SRA Re.. .Factor

Item

Quality
GEMSRAAC GEMSRAAM GEMSRA_SI Criterion

Factor

Figure 7.1: The object hierarchy for the GEM example.

52

ACCURACY - AC1 1.0

1.0

AM1 0.5

AM2 1.00

AM3 0.75

RELIABILITY ANOMALY0.755
0.86 0.75 AM4 N/A

AM5 N/A

AM6 N/A

AM7 N/A

Sl1 0.67

S12 1.00

SIMPLICITY S13 N/A

0.834 S14 N/A

S15 N/A

S16 N/A

Figure 7.2: The quality values for the GEM example in SRA Phase.

53

GEMDD, GEMCUT, GEMCSCIT and GEMCSCIIT. These objects are all sub-
objects of the object GEM. The following object represents the GEM_.SRA which is
the object for the Software Requirement Analysis phase.

CLASS DPI
object
Development-phase-name: GEMSRA
Factor-information: (GEMSRAReT, GEMSRAEfT,...)

In the Software Requirement Analysis phase, all the software quality factors should
be evaluated based on the requirement specification. In this example, because only
the reliability factor is considered, structure of the object GEMSRARe is shown as
follows:

CLASS QFI
object
Quality-factor-name: GEMSRARe
Value: 0.86
Criterion-information: (GEMSRAACT, GEMSRAAMT,

GEMSRASIT)

There are three objects in the Class QCF for the software project GEM in the Soft-
ware Requirement Analysis phase: GEMSRAAC, GEMSRAAM, and GEMSRASI.
Each of the three objects represents a software criterion for the reliability factor. They
are shown as follows:

CLASS QCI
object
Quality-criterion-name: GEMSRAAC
Value: 1.0
Metric-information: (1.0)

CLASS QCI
object
Quality-criterion-name: GEMSRAAM
Value: 0.75
Metric-information: (0.5, 1.00, 0.75, NA, NA, NA, NA)

CLASS QCI
object
Quality-criterion-name: GEMSRASI
Value: 0.834
Metric-information: (0.67, 1.00, NA, NA, NA, NA)

The three objects described above are stored in the Object-Oriented Data Base.
Object constructions for the software project GEM in the Detailed Design phase (DD)

54

and the Coding and CSU Testing phase (CUT) are described in Appendix B.

Now we are going to show how the DTMS works. To make the example eas-
ier to understand. unrelated object details are skipped and the dependency-directed
backtracking is represented by the = sign.

Operatiorn flows of the DTMS is as follows:

Step 0. Based on the quality data of the example, data objects hierarchy for object
GEM are constructed.

Step 1. Since the Reliability factor does not achieve the expected standard, it is
chosen as the target.

Step 2. DTMS is invoked for verifying and improving software quality.

Step 3. Dependency-Directed Backtracking is invoked to find the culprit, and the
Dependency- Directed Backtracking path is
From (GEM, ..., GEMSRA, GEM_PD, ...)

(GEMSRA, ..., GEMSRAReT)

(GEMSRARe, 0.86, GEMSRAACT, GEMSRA-AMT, GEMSRASIT)

= (GEMSRAAM, 0.75, 0.5, 1.0, 0.75).

We find that the Anomaly Management criterion (0.75) is the principal short-
coming that lowers the value of GEM's Reliability; the Error Tolerance/Control
metric (0.5) : the rmi-jor flaw that makes the Anomaly Management criterion
value low. It is picked as the culprit, and the dependency-directed backtracking
paths are shown in Figure 7.3.

Step 4. Through the Inference Engine, DTMS provides the user with the quality im-
provement suggestions, i.e., the Error Tolerance/Control metric in the Anomaly
Management criterion should be improved.

Step 5. The user checks the Error Tolerance/Control metric checklists, and find
that some errors are identified. But, no processing instructions for recovery or
repair are provided and a standard for handling errors is needed. Therefore, the
user provides processing instructions for recovery or repair errors and builds a
standard for handling errors, which then increase the Error Tolerance/Control
metric to 1.0. System software quality metrics are remeasured. The Anomaly
Management criterion is then increased to 0.92, and the Reliability factor is
increased to 0.92.

Step 6. After our expert system compares the new quality values with the expected
quality values, our expert system finds that the new quality values are still
smaller than the expected quality values. The operation goes to Step 3.

55

II (Y,...,Y_PD,YDD)

DPI (YPD...) (YDD,...,Y_DD_Ef,Y_DDRe)/
QFI ... (YDD_Ef,0.693) (Y DDRe,0.279,... Y_DDAM,YDDSI)

QOCI (Y_DD_AM,0.067,0.0,0.2,0.0)

Figure 7.3: The dependency-directed backtracking paths of the GEM example.

The second invocation of the DTMS will take the Design Structure metric as the
culprit. The user checks the checklists and includes diagrams for identifying CSCI
functions in a structured fashion. The Design Structure metric is increased to 1.0,
the Simplicity criterion is raised to 1.0, and the Reliability is improved to 0.97. Since
the real Reliability factor value is greater than the expected value (0.95), the DTMS
stops.

After the DTMS, the requirements were modified to include a standard for han-
dling errors such that all error conditions are passed to the calling function element,
and to include diagrams for identifying all CSCI functions in a structured fashion.
The newly revised requirement document is given as follows:

A mathematical function is needed to solve a system of linear equations. It
is expected that the Gaussian Elimination method is used and the function
be implemented in a high level programming language like PASCAL. The
function takes a set of real coefficients (with 5 decimal points precision)
as input and a set of real values (with 5 decimal points precision) as
output. There are no more than 500 system equations. All constants used
inside this function have precision of 5 digits after the decimal point. All
subscripts must be range-tested. All output must be verified before final
outputting. Error conditions must be identified for invalid input/output
values and wrong system equation sizes. The error conditions will be

56

AC AM SI
AC1 1.00 AM1 1.00 SI1 1.00

AM2 1.00 S12 1.00
AM3 0.75 S13 N/A
AM4 N/A S14 N/A
AM5 N/A S15 N/A
AM6 N/A S16 N/A
AM7 N/A

Table 7.2: The revised metric values for the GEM example in the Software Require-
ment Analysis Phase.

handled by a procedure that will handle all the error conditions in the
system. Diagrams should be provided for identifying all CSCI functions in
a structured fashion.

The revised criteria and reliability values calculated by using the data in Table 7.2
are given as follows:

Accuracy(AC) = AVE(AC1) = 1.00

Anomaly(AM) = AVE(AM1, AM2, AM3, AM4, AM5, AM6, AM7) = 0.92

Simplicity(SI) = AVE(SI1, S12, S13, S14, SI., S16) = 1.00

The newly revised reliability (RL) after the software requirement analysis phase:

RL = AVE(AC, AM, SI) = 0.97

After the software requirement analysis phase, the same process for developing
quality software program will continue to the later phases of the software development
cycle. In Appendix B, the detailed design and the code for GEM will be implemented
using a similar method as described in this chapter.

57

Chapter 8

Development Issues

8.1 Expert System Building Tool Selection

The minimum capabilities of an expert system building tool for software quality assur-
ance activities are to represent facts and rules, and do inferences. The rule capacities
of an expert system building tool should be considered for various scales of software
projects. Hybrid expert system building tools are suggested to be used for a large
scale software project. For a small scale software project, any tools mentioned in
Chapter 2 can be used. The object-oriented approach is not the only representation
for storing information of the software quality assurance activities for building expert
systems. The object-oriented approach is selected because of its efficiency to retrieve
information and capability to integrate with all the information in the software devel-
opment environment. The DTMS is recommended for its efficiency in backtracking.
Without applying the DTMS, many rules need to be added. It is easier to maintain
rules and facts in the expert system using the Object-Oriented Data Base and the
DTMS.

There ,re two methods to implement our expert system framework. One method
is to use high level languages, especially AI languages, like LISP, PROLOG, etc.
The other method is to use current expert system building tools. Using high level
language to implement this framework, every component of this framework (Object-
Oriented Data Base, Rule Set, Meta Rules, and TMS) needs to be implemented by
the developers. An expert system building tool is recommended for implementing this
framework for its multiple features. A suitable expert system building tool should be
able to supply the following capabilities:

" Rules and meta rules inference engine.

* Object-oriented knowledge representation.

58

* Dependency-directed backtracking.

Since our expert system framework is designed to provide assistance throughout
the software development cycle, more than 500 rules will be created. Due to the
large number of rules created, the mechanism of knowledge representation chosen.
and the inferential knowledge used in our expert system framework, hybrid expert
system building tools are more appropriate than others. Three widely used hybrid
expert system building tools, ART, KEE, and Knowledge Craft, will be compared
here [15-16.22.38]. Although a hybrid expert system building tool may have a variety
of advantages and disadvantages; only those advantages and disadvantages related to
our software quality assurance activities are discussed.

ART:

* Advantages:

- ART is the most powerful tool for doing rule and meta rule inference.

- ART's approach to truth maintenance and viewpoints will be very useful
to establish logical dependencies to update the system dynamically as facts
change.

- ART has the fastest execution time.

* Disadvantages:

- ART keeps its knowledge primarily in rules. But in the software develop-
ment process, not every problem can be conceptualized in terms of rules.

- Maintenance can become a significant problem as the number of rules
increase. Significant maintenance problems begin when systems have over
2,000 rules.

- ART does not provide the best knowledge interface and lacks good graphic
editing facilities.

KEE:

e Advantages:

- KEE has the best knowledge interface environment with superior graphic
editing facilities and good on-screen menus.

- Active values support data-directed reasoning and allow the system to
recognize and monitor changing conditions.

- Object-oriented programming allows convenient modularization of the ex-
pert system.

59

* Disadvantages:

- KEE has system-defined inheritance and will not allow users to tailor in-
heritance for special situation.

- KEE does not use complete backward chaining.

Knowledge Craft:

e Advantages:

- Knowledge Craft has the most powerful schema representation language. It
offers such features as dynamic inheritance, meta-information, user-defined
inheritance search patterns, and user-defined dependency relationships.

- Knowledge Craft's context mechanism allows users to create multiple hy-
potheses systems.

- Knowledge Craft's agenda mechanism allows users to tailor knowledge base
processing to various applications.

- Object-oriented programming permits the conceptualization of problems
in terms of objects and relationships.

e Disadvantages:

- Knowledge Craft's components integration is poor.

- Knowledge Craft lacks good interface.

- Knowledge Craft lacks truth maintenance.

We recommend that KEE be used as the expert system building tool for im-
plementing our Software Quality Assurance Expert System Framework (SQAESF).
KEE provides all the foundation that SQAESF needs, an inference engine, rules and
meta rules representation, object-oriented knowledge representation, and dependency-
directed backtracking. KEE allows users to develop prototypes more rapidly than
other expert system building tools and is available for all varieties of hardware:
mini/mainframe, Sun, PC, etc.

8.2 Application Scope for SQAESF

Our Software Quality Assurance Fxpert System Framework (SQAESF) is not limited
to only the reliability factor in the software quality framework. In fact, the way
we store the software quality factors in the Object-Oriented Data Base and use the
Dependency-Based Truth Maintenance System to find the culprits has nothing to
do with which factors we are choosing from the software quality framework. The

60

only difference is in the rules, where we should convert metric elenints for all quality
factors Mito rules and consider nore meta rules for controlling the usage of those rules.

Vhen all the software quality factors are considered, their metric elements will
be converted into rules for quality assurance activities. Thev' can all be combined
according to the parent-child hierarchy relationship [12] to determine the final software
quality. In this parent-child hierarchy relationship, each software factor is considered
as the child of the software quality parent. By default, the children of the parent
software quality are given the same weight (i.e., since there are 13 factors, each factor
is assigned a weight of 1/13). The user of the system can change the weights of
differenrt factors to reflect the various degrees of importance of individual factors to
their applications. Thus, this scheme can provide an overall view of the software
quality.

There are some limitations to this expert system framework. First, it cannot
solve the ripple pherionerion. There are such cases that a software quality factor has
achieved the user's expected value, but some of its criteria values are not high enough.
In this case, this software quality factor will pass the design evaluation review, but
it will cause the problem (low criteria values) to be carried over to the next phase of
the software development cycle. Second, this framework cannot automatically correct
the design problems, which cani be solved by automatic programming [51]. Whenever
a culprit is found, the framework only gives design improvement suggestions. The
users still need to change the design manually according to the suggestions provided
by the expert system framework.

61

Chapter 9

Conclusions and Future Work

III th is project., a ktiow letige baWsedl qual ityv assurance systerli fram ework (Software
(2uijtl t v Assii ance 'x pert Sy'stern, Iraim nwork) has Ibeen presenited. It c:an be 1a te-
grated -I wi tI te iI formzihtori atvailable frorn the Soft, ware Qual ity Measu remje t. Frani-
w'Ork, e-specially the ANMS, for qualit v assurance. This expert systemi framnework i II-
x-ol Iyes k now le d ge eiigI iieri rI g IechIT o logy, wl I C II uses object-omien ted d tau base to store
Ihei knuowledge (the. softwarc quality In formation), rules an(I meta rules as its inferei,.

i WI! kitowledge. A subsy, stem, IDepenudeiicy- Based Truth Maintenance Systemn, based
()Ithe lij othietic~i rea-SOn1ing is usedI for design evaluation of the software quality.

soll t Wd re (ual it N, i-ssurice activities call be miiuch impijrovedl with the use of knowledge
l "ty~lsstenis.

III thI e fol lowinrg sectionls, \we(WIll SU ma uary our results and (lisciiss what nieedl to
be((velt ped further.

9.1 Summary of the Results

It t Ih)is pr jert., we haive shiowi tHat knowledge b~asedl systemrs can greatly enforce
S)fl war((p ialit v assuiranice. W\e have presented a knowledge based system framework
for soft w'are (j u1d it v assuirricc, which is hiigh ligh ted as follows:

*Our kno(wleelpe baLsed qualitv assurance systern framework is an integrated sys,-
tern which tses- Hic in formation fromn the software quality' Mieasuremen t frame-
work [Il] anid the knowledge basedl systemn features. First, the quality Information
froin the software quality mciasuremjent framnework is stored am objects in the
Object-Oriented Data Base. Second, the quality mnetric elements served as a
puildelinie are cornverted i ito rtile-,. The control portion of the Inference Engiune
is control led ui rig meta ridles for ridle selection andl justification in rase multiple

(;12

choices of reasoning emerge. With rules in the RS in this framework, it can
express the knowledge that traditional data base systems cannot.

Object-Oriented Data Base: All the quality information and their calculation
formulas are stored in the Object-Oriented Data Base. The encapsulation of
quality information and calculation formulas makes our system modular. The
Inference Engine can send messages to the Object-Oriented Data Base to re-
trieve the information. The Inference Engine can also send messages to the
Object-Oriented Data Base to invoke formula calculations. With the mes-
sage passing facilities, the Object-Oriented Data Base can be integrated with
the Inference Engine. By supporting attachment capability of procedures, the
Object-Oriented Data Base can easily be integrated with Dependency-Based
Truth Maintenance System. All these features are supported by the object-
oriented data base. Traditional Entity-Relationship model or Relational Data
Model does not support these features. By creating new classes or subclasses.
the object-oriented data base provides flexibility for modifying the structure of
quality information. The user can easily add quality information or modify the
structure of quality information.

* Rule Set (RS) and Meta Rule (MR) as the inferential knowledge: There are two
major components in an inference engine, namely the inference and control. In
our expert system, we use the logical rules as our inference part of the inference
engine. The logical rules have the If-Then-Else structure, and are converted
from the software quality metric elements. Instead of bonly using the metric
elements to evaluate the design of a software system, those metric elements
are converted into a design guideline to help the user of our expert system
improve the software quality. The second part of the inference engine, the
control portion, takes care of the problems such as how to start the system and
how to resolve the conflicts when there are many different lines of reasoning.
This control portion is implemented using a set of meta rules. Meta rules are
the rules about rules themselves, and they are used for rule selection and rule
justification when there are choices of alternatives.

Dependency-Based Truth Maintenance System (DTMS): Data objects which are
constructed and stored in the Object-Oriented Data Base are used as inputs of
our system. The outputs of our system are design improvement suggestions.
The search mechanism applied here, which efficiently retrieves facts and rules,
is the dependency-directed backtracking. The DTMS communicates with the
user through the Inference Engine. The Inference Engine invokes the DTMS
whenever any software quality factors of the evaluated design do not achieve the
user's expected values. The DTMS can be iteratively called. Each time when
it is called, a culprit is found and a design improvement suggestion is made. It
stops when the goal is achieved or no significant improvement can be made.

63

The integration of our knowledge base with the software quality framework [1]
provides a wide range of supports to the development of large scale software systems.
It can support all phases of the software development cycle. Different software quality
factors are considered to validate the design decisions. Some of the advantages and
contributions to the software engineering community are discussed in the following
paragraphs.

A knowledge based system is designed instead of using traditional procedural
packages. In the conventional approaches, knowledge about problems and procedures
for manipulating that knowledge to solve the problems is mixed together. When de-
velopers want to change their development environment, they should ask other people
to modify the software that constitute the development environment. In designing a
software quality assurance system, we separate knowledge from inference and control.
All the quality information knowledge is put in the Object-Oriented Data Base. All
the situation-action knowledge is put in the Rule Set (RS). Software quality engineers
can easily modify their own quality information structure and data. Project managers
can easily change their working environment by modifying the rules and meta rules.
Because any new tools can be easily integrated into our system by adding some rules
as its interface, the automatic tool invocation can be achieved. Good quality software
can be easily developed with the help of our system.

The software quality assurance activity is a comprehensive view of the whole
software development process rather than a restrictive one. In other words, the SQA
is not restricted to the function of a software quality group, but rather it includes all
necessary activities that may contribute to the quality of software during the entire
software development cycle of the product. In our integrated knowledge based quality
assurance system, the software quality is measured by a wide range of software quality
factors, and covers the entire software development cycle. This system is especially
useful to those large scale software development teams. Unlike some of the current
software quality assurance tools which concentrate on limited activities or on a specific
application domain, our system provides a wide range of activities and is not limited
to any application domain. The developers who use our system can use the knowledge
from the Object-Oriented Data Base and the Rule Set for quality design improvement.
In the case of low quality design, the Dependency-Based Truth Maintenance System
can provide design suggestions. Our system shall play the most important role in
monitoring software assurance activities and providing suggestions for improvement
to the software developers.

9.2 Future Work

Besides the implementation of our system, the following issues need further investi-
gation:

64

* Model Refinement: In this project, we use the software quality framework [1]
to build an expert system framework for software quality assurance. In this
framework, regression analysis is used to determine the relationship between
factors and criteria. After the regression analysis, the relationship becomes a
mathematical form. The mathematical form provides a deterministic relation-
ship that is static and cannot be changed no matter what kind of activities we
are performing on the software product. There are no relationships between de-
velopment phases. We should provide a way to modify the existing framework
to support probability reasoning that can change the relationships between fac-
tors and criteria and should provide a way for reasoning between each phase
of the software development process. The probability relationships are closer
to dealing with the real world problem than the deterministic relationship. For
example, if we change the software product in phase A, then to some extent this
change will affect another development phase, say phase B. The same conditions
exist between two factors in consecutive development phases and two different
factors in the same development phase.

Before the requirement specification phase, the expected quality factors for each
development item are specified. At each development milestone, the values of
quality factors are evaluated and compared with the expected values. In our
current scheme, values of the evaluated quality factors must be higher than
or equal to the expected values in every milestone, which basically is not con-
cerned by project managers. What the project managers consider is the qualitx
of the final products, not necessarily the quality of intermediate products, al-
though a deficiency in the early phase of the software development cycle will
ripple through the software development cycle and affect the quality of the final
product.

Under the probability reasoning model, the ripple phenomenon can be repre-
sented by rules. These rules are used to describe the relationships between
items in different development phases. When the expected values for quality
factors are specified, but the real values for quality factors are unknown, it is
impossible to fire the ripple phenomenon rules to predict the quality of the prod-
uct. One possible solution is to use the assumption-based truth maintenance
system (ATMS) [36] because the ATMS allows multiple assumptions. Parallel
reasoning is used to detect any wrong assumptions about the quality factors
in every phase. When the development proceeds, the real quality factors are
obtained and the ATMS can tell which quality factors in the next phase should
be achieved if the quality factors in the current phase do not meet the expected
quality factors.

Build the Data/Module Dependency Relation on the DTMS: The data/module
dependency relation exists between a set of data and a module which is needed
to manipulate that set of data. Recording the data/module dependency re-
lation can help simplify the maintenance activities. After the data/module
dependency relation is recorded, using the dependency-directed backtracking
any change of the data can be propagated to its related modules. Furthermore,
if there is a need to manipulate some data that has been processed before, its

65

related modules can be retrieved by tracing the data/module dependency re-
lations. That is, the dependency relation can be used to establish a software
development library [7] to improve software reusability.

" Build the Phase/Phase Dependency Relation on the DTMS: The phase/phase
dependency relation only exists between two modules which are in adjacent
phases of software development cycle. It happens when a module in the later
phase is derived from a module in the former phase. After the phase/phase
dependency relation is established, using the dependency-directed backtracking
(forward chaining) any change of the former (later) phase can be propagated to
its related modules in the later (former) phase.

" Extend the Object-Oriented Representation Contents: In the Software Life
Cycle Development Environment (SLCSE), not only software quality informa-
tion, but also other information such as programs/documents, internal forms
of programs, and test data, are important. These data items are described in
DOD-STD-2167A [6]. Relational data bases do not support representation of
variable-length of data, operators for manipulating flow graph, and operators
for test data. A good representation scheme should cover all information de-
scribed above. The object-oriented approach does not have these limitations.
The variable-length of data can be stored in a slot of an object. With meth-
ods defined in each class, operators for different types of data can be defined.
Object-oriented approach seems to be the best choice for a unified represen-
tation. This representation can help integrate the software development envi-
ronment with expert system technologies. The object-oriented representation
which covers all the information in the software development cycle should be
further investigated.

* Extending the concept of the software quality assurance activities as a planning
process to improve the software quality. Because software quality assurance is
defined as "planned and systematic pattern of all actions necessary to provide
adequate confidence that the software confirms to establish technical require-
ment" [4], we can treat the software quality assurance activities as a planning
process with a well defined goal (high software quality value). In this planning
process, a plan for each development phase handling the development ordering
in computer software units (CSU), computer software components (CSC), and
computer software configuration items (CSCI) should be considered. The plan-
ning knowledge will be derived from both the software developers and software
tools available in the development environment. This development plan will be
useful when developing a large scale software system. Since there will be many
software components and software units, the order of the development will play
an important role in the entire software system. Which component or unit
should be developed (for example, in a top-down or bottom-up fashion) first
will affect the quality for the final software product. This plan can be assisted
with the meta rules described in Chapter 5, and is subjected for replan in the
case of situation changes such as conflicts between different software factors.

66

Appendix A

Metric Questions for Reliability
Factor

Appendix A contains the metric questions for reliability factor during Software Re-
quirement Analysis phase (SRA), Detailed Design phase (DD), and Coding and CSU
testing (CUT) phase proposed in [12]. Other development phases like the Preliminary
Design (PD) and CSC Integration and Testing phase are not included here because
there are no significant number of metric questions in [12]. Each metric is numbered
according to the order appeared on the AMS metric question list. For example, met-
ric question 4.b under the criterion Accuracy (AC1) represents that it is the fourth
metric question related to the Software Requirement Analysis phase in that metric
sets, namely AC1.

In [12], the metric elements are numbered consecutively under each metric and
annotated with lowercase letters to indicate the phase which they should be applied.
The lowercase letters for the development lifecycle are:

a. System Requirement Analysis/Design

b. Software Requirement Analysis

c. Preliminary Design

d. Detailed Design

e. Coding and CSU Testing

f. CSC Integratinon and Testing

g. CSCI Testing

67

h. System Integration Testing

We extract the metric elements from [121 and follow their numbering convention
in this chapter. Since we divide metric elements by phases into sections, the metric
elements in each phase would not be consecutive. Because we only consider the soft-
ware development lifecycle, we will start from Software Requirement Analysis phase
in the next section.

A.1 Software Requirement Analysis Phase

The followings are questions for reliability measurement on Software Requirement
Analysis Phase:

CRITERION: ACCURACY (AC)

Metric: AC.1 - Accuracy

[4.b] Are there quantitative accuracy requirements for all applicable inputs asso-
ciated with each mission critical CSCI function?

[5.b] Are there quantitative accuracy requirements for all applicable outputs as-
sociated with each mission critical CSCI function?

[6.bj Are there quantitative accuracy requirements for all applicable constants
associated with each mission critical CSCI function?

[7.b] Do the existing math library routines planned for use in the CSCI provide
enough precision to support accuracy objectives?

CRITERION: ANOMALY (AM)

Metric: AM.1 - Error Tolerance/Control

[1.b] In how many instances are different functions allowed to execute at the same
time (concurrent processing)?

[2.b] In how many instances is concurrent processing centrally controlled.

[3.b] How many error conditions are identified?

68

[4.b] How many identified error conditions are provided with processing instruc-
tions for recovery or repair of the error?

[5.b] Is there a standard for handling errors such that all error conditions are
passed to the calling function/software element (CSCI, TLCSC, unit)?

[6.b] How many instances of the same function are required to execute more than
once for comparison purposes? (For example, polling parallel or redundant processing
results.)

[7.b] How many instances of parallel/redundant processing are centrally con-
trolled?

Metric: AM.2 - Improper Input Data

[1.b] Are error tolerances specified for all applicable external input data to the
CSCI?

Metric: AM.3- Computational Failures

[L.b] Are there requirements for detection of and recovery from all computational
failures?

[2.b] Are there requirements to range-test all loop and multiple transfer index
parameters before use?

[3.b] Are there requirements to range-test all subscript values before use?

[4.b] Are there requirements to check all critical outputs to verify that they are
reasonable before final outputting?

Metric: AM.4 - Hardware Faults

[1.b] Are there requirements to recovery from all detected hardware faults?

Metric: AM.5 - I/O Device Errors

[1.b] Are there requirements to recover from all I/O device errors.

Metric: AM.6 - Communication Errors

[1.b] Are there requirements to recover from all communication transmission er-
rors?

Metric: AM.7 - Communication Failures

69

[1.b] Are there requirements to recover from all failures to communicate with other
nodes/systems?

[2.b] Is there a requirement to periodically check adjacent nodes for operational
status?

[3.b] Is there a requirement to provide a strategy for alternate routing of messages?

CRITERION: SIMPLICITY (SI)

Metric: SI.1 - Design Structure

[1.b] Are there diagrams identifying all CSCI functions in a structured fashion?
(For example, top-down hierarchical.)

[9.b] Are there requirements for a programming standard?

[10.b] Has a programming standard been established?

Metric: SI.2 - Structured Language or Preprocessor

[1.b] Are there requirements to use a structured language or preprocessor for CSCI
implementation?

Metric: SI.3 - Data and Control Flow Complexity

Metric: SI.4 - Coding Simplicity

Metric: SI.5 - Specificity

Metric: SI.6 - Halstead's Level of Difficulty

A.2 Detailed Design Phase

The followings are questions for reliability measurement on Detailed Design:

CRITERION: ACCURACY (AC)

Metric: AC.1 - Accuracy

70

CRITERION: ANOMALY (AM)

Metric: AM.1 - Error Tolerance/Control

[5.d] When an error condition is detected, is its resolution determined by the
calling unit?

Metric: AM.2 - Improper Input Data

[2.d] Are values of all applicable inputs range-specified?

[3.d] Are all applicable inputs range-tested?

J4.d] Are conflicting requests and illegal combinations of all applicable inputs
identified and checked?

[5.d] Are all inputs checked and all errors (resulting from those inputs) reported
before processing begins?

[6.d] Is there a check to see if all data is available before processing begins?

Metric: AM.3 - Computational Failures

1.d] Is recovery provided for all computational faillures within the unit?

[2.d] Are all loop and multiple transfer index parameters range-tested before use?

[3.d] Are all subscript values range-tested before use?

[4.d] Are all critical outputs checked for reasonableness before final outputting?

Metric: AM.4 - Hardware Faults

Metric: AM.5 - I/O Device Errors

Metric: AM.6 - Communication Errors

Metric: AM.7 - Communication Failures

CRITERION: SIMPLICITY (SI)

Metric: SI.1 - Design Structure

71

[1.d] Does the design of the CSCI reflect a structured design approach? (For
example, top-down design.)

[2.d] Is the unit, independent of the source of input and destination of output?

[3.dl Is the unit independent of knowledge of prior processing?

[4.d] Does the unit description/prologue include input, output, processing, and
limitations?

[5.d] How many entrances into the units?

[6.d] How many exit from the unit?

[7.d] How many unique data items are in common blocks in this CSCI?

[8.d] How many, unique common blocks in this CSCI?

[l1.d] Does this unit description identify all interfacing units and interfacing hard-
ware?

Metric: SI.2 - Structured Language or Preprocessor

[1.d] How many units are implemented in a structured language or using a pre-
processor?

Metric: SI.3 - Data and Control Flow Complexity

[1.d] How many conditional branch statements are there in the unit? (For example,
IF, WHILE, REPEAT, DO/FOR, loop, CASE.)

[2.d] How many unconditional branch statements are there in the unit? (For
example, GOTO, CALL, RETURN.)

Metric: SI.4 - Coding Simplicity

[1.d] Is the unit's flow of control from top to bottom (i.e., control does not errati-
cally jump)?

[2.d] How many estimated lines of source code excluding comment lines and blank
line are there for the unit?

[3.d] How many negative boolean and compound boolean expressions are used in
the unit?

72

[4.d] How many loops are used in the unit? (For example, WHILE, REPEAT.
DO/FOR.)

[5.d] How many loops have unnatural exits? (For example, jumps out of loop.
return statements.)

[6.d] How many iteration loops are used in the unit (DO/FOR loops)?

[7.d] In how many iteration loops are indices modified to alter the fundamental
processing of the loop?

[8.d] Is the unit free from all self modification of code? (For example, the unit
does not alter instructions, overlays of code, etc.)

[10.d] What is the maximum nesting level in the unit?

[11.d] How many total branches (conditional and unconditional) are used in the
unit?

[12.d] How many data declaration statements are there in the unit?

[13.d] How many data manipulation statements are there in the unit?

[14.d] How many total data items (local and global) are used in the unit?

[15.d] How many local data items are used in the unit? (For example, variables
declared locally and value parameters.)

[16.d] Does each data item in the unit have a single use? (For example, each array
serves only one purpose.)

[18.d] Does the CSCI avoid repeated and redundant code by utilizing
macros/procedures/functions?

Metric: SI.5 - Specificity

[1.d] How many data items are used as input to the unit?

[2.d] How many data items are used for output by the unit?

[3.d] How many parameters in the unit's calling sequence return output values?

[4.d] Does the unit perform a single, non-divisible function?

Metric: SI.6 - Halstead's Level of Difficulty

73

[1.dJ How many unique operators are in the unit?

S2.d] How man. unique operands are in the unit?

[3.d] How many total operands are in the unit?

A.3 Coding and CSU Testing

The followings are questions for reliability measurement on Code/Unit Testing (e):

CRITERION: ACCURACY (AC)

Metric: AC.1 - Accuracy

CRITERION: ANOMALY (AM)

Metric: AM.1 - Error Tolerance/Control

[5.e] When an error condition is detected, is its resolution determined by the
calling unit?

Metric: AM.2 - Improper Input Data

[3.e] Are all applicable inputs range-tested?

[4.e] Are conflicting requests and illegal combinations of all applicable inputs iden-
tified and checked?

[5.e] Are all inputs checked and all errors (resulting from those inputs) reported
before processing begins?

[6.e] Is there a check to see if all data is available before processing begins?

Metric: AM.3 - Computational Failures

[1.e] Is recovery provided for all computational failures within the unit?

[2.e] Are all loop and multiple transfer index parameters range-tested before use?

[3.e] Are all subscript values range-tested before use?

[4.e] Are all critical outputs checked for reasonableness before final outputting?

Metric: AM.4 - Hardware Faults

74

Metric: AM.5 - 1/O Device Errors

Metric: AM.6 - Communication Errors

Metric: AM.7 - Communication Failures

CRITERION: SIMPLICITY (SI)

Metric: S1.1 - Design Structure

[2.e] Is the unit independent of the source of input and destination of output?

[3.ej Is the unit independent of knowledge of prior processing?

[4.eJ Does the unit description/prologue include input, output, processing, and

limitations?

[5.e] How many entrances into the units?

(6.e] How many exit from the unit?

17.e] flow many unique data items are in common blocks in this CSCI?

[S.e] How many unique common blocks in this CSCI?

[11.e] Does this unit description identify all interfacing units and interfacing hard-
ware?

Metric: SI.2 - Structured Language or Preprocessor

Metric: SI.3 - Data and Control Flow Complexity

[I .e] How mary conditional branch statements are there in the unit? (For example.
IF, WHILE, REPEAT, DO/FOR, loop, CASE.)

[2.e] How many unconditional branch statements are there in the unit? (For
example, GOTO, CALL, RETURN.)

Metric: SI.4 - Coding Simplicity

[1.e] Is the unit's flow of control from top to bottom (i.e]., control does not errat-
ically jump)?

(2.el How many lines of source code, excluding comment lines and blank lines, are
there for the unit?

75

[3.e] How many negative boolean and compound boolean expressions are used in
the unit?

[4.e] How many loops are used in the unit? (For example, WHILE, REPEAT.,
DO/FOR.)

[5.e] How many loops have unnatural exits? (For example, jumps out of loop,
return statements.)

[6.eJ How many iteration loops are used in the unit (DO/FOR loops)?

[7.e] In how many iteration loops are indices modified to alter the fundamental
processing of the loop?

[8.el Is the unit free from all self modification of code? (For example, the unit
does not alter instructions, overlays of code, etc.)

[9.el How many statement labels are used in the unit, excluding labels for format
statements?

[10.e] What is the maximum nesting level in the unit?

[11.e] How many total branches (conditional and unconditional) are used in the
unit?

[12.e] How many data declaration statements are there in the unit?

[13.e] How many data manipulation statements are there in the unit?

[14.e] How many total data items (local and global) are used in the unit?

[15.e] How many local data items are used in the unit? (For example, variables
declared locally and value parameters.)

[16.e] Does each data item in the unit have a single use? (For example, each array
serves only one purpose.)

[17.e] Is this unit coded according to the required programming standard?

[18.e] Does the CSCI avoid repeated and redundant code by utilizing
macros/ procedures/functions?

Metric: SI.5 - Specificity

[L.e] How many data items are used as input to the unit?

76

[2.e] How many data items are used for output by the unit?

[3.e) How many parameters in the unit's calling sequence return output values?

[4.e] Does the unit perform a single, non-divisible function?

Metric: SI.6 - Halstead's Level of Difficulty

[1.e] How manyI unique operators are in the unit?

[2.ej How many unique operands are in the unit?

[3.e] How many total operands are in the unit?

77

Appendix B

Detailed Design and Coding for
GEM

Appendix B contains the detailed design and coding for the GEM example discussed
in Chapter 7. The following paragraphs are the reliability metric/criterion/factor
values corresponding to the detailed design and coding of GEM.

B.1 Detailed Design of GEM

The detailed design of the Gaussian Elimination Method (GEM):

1. Augment the n x n coefficient matrix with the vector of righthand sides to form
an n x (n - 1) matrix.

2. Interchange rows if necessary to make the value of all the largest magnitude of
any coefficient in the first column.

3. Create zeros in the second through the nth rows in the first column by sub-
tracting a,1/all times the first row from the ith row. Store the a1i/al in a,1 , i

4. Repeat Steps (2) and (3) for the second through the (n - 1)st rows, put the
largest-magnitude coefficient on the diagonal by interchanging rows (considering
only rows j to n), and then subtract a,1/ajj times the Jth row from the ith row
so that in all positions of the th column below the diagonal are zeros. Store
the aij/ajj in aij, i = j + 1,. . . ,n. At the conclusion of this step, the system is
upper- triangular.

78

5. Solve for x,, from the nth equation by formula:

Xn = a-,n+I/ann.

6. Solve for X ,_I,_2,... ,x 1 from the (n - 1)st through the first equation by
formula:

ai,,+l - "n=i+1 aiJXJ
3XI = J

aii

The following table is the metrics/criteria values for the reliability factor during
the detailed design phase (DD) of the example GEM:

AC AM SI
ACi N/A AM1 1.00 SIl 0.875

AM2 0.80 S12 1.00
AM3 0.75 S13 0.031
AM4 N/A S14 0.882
AM5 N/A S15 0.868
AM6 N/A S16 0.92

__ AM7 N/A _

Accuracy(AC) = AVE(AC1) = N/A

Anomaly(AM) = AVE(AM1, AM2, AM3, AM4, AM5, AM6, AM7) = 0.85

Simplicity(SI) = AVE(SI1, S12, S13, S14, S15, S16) = 0.73

The reliability (RL) after the detailed design phase becomes

RL = AVE(AC, AM, SI) = 0.79

When this information is stored in the Object-Oriented Data Base, we will have
one object (GEM.DD) in Class DPI, one object (GEMDDRe) in Class QFI to rep-
resent reliability factor, and two objects (GEMDDAM and GEMDDSI) in Class

79

QCF to represent the criteria anomaly and simplicity for reliability factor. The rep-
resentations of these objects are shown as follows:

CLASS DPI
object
Development-phase-name: GEM_.DD
Factor-information: (GEMDDReT, GEMDDEfT,...)

CLASS QFI
object
Quality-factor-name: GEMDDRe
Value: 0.79
Criterion-information: (GEMDDAM T,

GEMDDSIT)

CLASS QCI
object
Quality-criterion-name: GEMDDAM
Value: 0.85
Metric-information: (1.0, 0.80, 0.75, NA, NA, NA, NA)

CLASS QCI
object
Quality-criterion-name: GEMDDSI
Value: 0.73
Metric-information: (0.875, 1.00, 0.031, 0.882, 0.868, 0.92)

B.2 Coding of GEM

After the detailed design (DD) phase, the program was implemented using PASCAL
programming language on a SUN workstation. The following table contains the re-
liability metric/criterion/factor values during the Coding and CSC Testing (CUT)
phase (the program is given at the end of this appendix):

80

AC AM r SI
AC1 N/A AMI1 1.00 S11 0.875

AM2 0.80 S12 N/A
AM3 0.75 S13 0.031
AM4 N/A S14 0.896
AM5 N/A SI5 0.686
AM6 N/A S16 0.92
AM7 N/A

Accuracy(AC) = AVE(AC1) = N/A

Anomaly(AM) = AVE(AM1, AM2, AM3, AM4, AM5, AM6, AM7) = 0.85

Sirnplicity(SI) = AVE(SI1, S12, S13, S14, S15, S16) = 0.682

The reliability (RL) after the CSC integration testing phase:

RL = AVE(AC, AM, SI) = 0.766

All the quality information for GEM in the Coding and CSC Testing phase is
represented as follows:

CLASS DPI
object
Development-phase-name: GEMCUT
Factor-information: (G EMCUTReT, G EM-CUTEfT,...)

CLASS QFI
object
Quality-factor-name: GEMCUTRe
Value: 0.766
Criterion-information: (GEMCUT.AMT,

GEMCUTSIT)

CLASS QCI
object
Quality-criterion-name: GEMCUTAM
Value: 0.85
Metric-informatkia: (1.0, 0.80, 0.75, NA, NA, NA, NA)

81

CL. 3S QCI
object
Quality-criterion-name: GEMCUTSI
Value: 0.682
Metric-information: (0.875, N/A, 0.031, 0.896, 0.689, 0.92)

The program written in PASCAL for the GEM example is given as follows.

82

program gaussian.el4mination (input,output);

(* This module is used to solve a system of linear equations.

(* It is expected that the Gaussian Elimination method is
(* used and the function be implemented in a high level programming -)
(* language like PASCAL. The function takes a set of real

(* coefficients (with 5 decimal points precision) as input and a set *)
(* of real values (with 5 decimal points precision) as output. The *)
(* number of system equations are less than 500. All constants used *)

(* inside this function are having precision of 5 digits after the *)
(* decimal point. All subscripts must be range tested. All output *)
(* must be verified before final outputting. Error conditions must *)
(* be identified for invalid input/output values and wrong system

(* equation sizes.

const

matrixsize = 500;
type

matrixtype = array [1..matrixsize,1..matrixsize3 of real;
arraytype = array [1..matrixsize] of real;

var
a matrixtype; (is the augmented matrix, including b *)

n : integer; (* number of rows and columns or matrix a
p : integer; (* number of columns of matrix b *)

(* We are given an n * n matrix a, n * p matrix b,
and n * p matrix x (result matrix) *)

x : matrixtype; (* x is used to store the resulting matrix *)

i : integer;

procedure print (a : matrixtype; n, p : integer);

(* This procedure prints the input matrix a and b. Notes: the
matrix a in program is an augmented matrix, but we print matrix a
and matrix b separately.

var i,j : integer;
begin

writeln;writeln;
writeln(' This is matrix A:');
writeln;

83

for i :- 1 to n do
begin

write(' ':8);
for j := 1 to n do

begin
write(a[i,j] :10:5);

end;
writeln;

end;
writeln; writeln;
writeln(' This is matrix B:');
writeln;
for i :- 1 to n do
begin

write(' ':8);

for j := (n + 1) to (n + p) do
begin
write(a[i,j] :10:5);

end;
writeln;

end;
end;

procedure printanswer (x : matrixtype; D, p integer);

(* This procedure prints the answer of the problem. Notes: since the

resulting matrix is a n by p matrix, the output will be printed as

a general form.

var i, j : integer;

begin
writeln ; writeln;
writeln(' This is the solution to the above system linear equation:');
writeln;
for i := 1 to n do
begin

write(' ':8);
for j := 1 to p do

begin
write('x[',i:1,',,j:l,1 = ',x[i,j3:1i:5,' 1);

end;
writeln;

end;

writeln;
writeln(' --);

84

end;

procedure exchange (var a : matrixtype; rowl, row2 : integer);

(* This procedure exchange the two rows in procedure Gaussian

eliminaiton *)

var temp :arraytype;
i integer;

begin
for i I to matrixsize do temp[i] := a[rowl,i];

for i 1 to matrixsize do a[rowl,i] a[row2,i];

for i 1 to matrixsize do a[row2,i: temp[i];
end;

procedure findmax (var a : matrixtype; current : integer;
var row, col : integer);

(* This procedure finds the maximum pivot value in column 'col' *)

var j : integer;
max real;

begin
row current;
max abs(a[current,col]);

fcr j := (current + 1) to n do
if abs(a[j,col]) > max then
begin

row j,
max abs(a[j,col]);

end;
end;

procedure gaussian.elim (var a matrixtype; var n, p integer);

(* This is the main procedure for gaussian elimination method *)

var
i, j : integer;

k : integer;

row : integer;
col : integer;

tmp : real;

85

m arraytype;
begin

if n > matrixsize then writeln('Input matrix size error')

else
begin

col := 0;
for i := 1 to n do
begin

for j := 1 to matrixsize do m[jJ := 0;
col := col + 1;
findmax(a,i,row,col);
if row <> i then exchange(a,i,row);
for k := (i + 1) to n do

begin
m[k] := a[k,col]/a[i,col],

end;
for k := (i + 1) to n do

begin
for j := col to (n + p) do a[k,j] a[k,j] - (m[k] *a[i,j]);

end;
end;

for i 1 to p do x[n,i] := a[n,n+iJ/a[n,nJ;
for i n-i downto 1 do

begin
for j I to p do

begin
tmp := 0;
for k:= (i + 1) to n do tmp := tmp + a[i,k]*x[k,j];
x[i,j] := (a[i,n+jJ-tmp)/a[i,iJ;

end;
end;

end;
end;

begin (* main *)
urit eln; writ eln; writ eln ;writeln ;

gaussian-elim(a,n,p);
printanswer(x,n,p);

end. (* end main *)

86

Bibliography

[1] J. Cavano and J. McCall, "A Framework for the Measurement of Software Qual-
ity", Proceedings of the A CM Software Quality Assurance Workshop, November.
1978, pp. 133-139.

[2] T. Bowen, J. Post, J. Tsai, E. Presson, and R. Schmidt, "Software Quality
Measurement for Distributed Systems, Vol. I, II, III", RADC-TR-83-175, July
1983.

[3] T. S. Chow (ed.), Software Quality Assurance, A Practical Approach, IEEE Com-
puter Society Press, New York, NY 10017, 1985.

[4] Software Quality Assurance Plans, ANSI/IEEE Std 730-1984.

[5] Software Quality Assurance Planning, ANSI/IEEE Std 983-1986.

(6] DOD-STD-2167A, Oct 1987.

[7] DOD-STD-2168, Oct 1987.

[8] S. D. Conte, H. E. Kunsmore, V. Y. Shen, Software Engineering Metrics and
Models, The Benjamin Publishing Company, Inc., 1986.

[9] S. S. Yau, J. S. Collofello, C. C. Hsieh, "Self-metric Software, A Handbook: Part
I, Logical Ripple Effect Analysis", NTIS AD-A 086-291, RADC- TR-80-138, April
1980.

[10] S. S. Yau, and J. S. Collofello, "Some Stability Measures for Software Mainte-
nance", IEEE Transactions on Software Engineering, Vol. SE-6, No. 6, November
1980, pp. 545-552.

[11] S. S. Yau, and J. S. Collofello, "Design Stability Measures for Software Mainte-
nance", IEEE Transactions on Software Engineering, Vol. SE-li, No. 9, Septem-
ber 1985, pp. 849-856.

[12] Program Maintenance Manual for the Automated Measurement System, Vol. I,
II, Rome Air Development Center, 1987.

[13 J. McCall, et al, "Methodology for Software Reliability Prediction", RADC-TR-
87-171, Vol I, II, Science Applications Internation Corporation, November 1987.

87

[14] P. Harmon and D. King. -Expert Systems", John Wiley & Sons, New York,
1985.

[15] P. Harmon, R. Maus, and W. Morrissey, Expert Systems, Tools and Applications,
John Wiley & Sons, New York, 1988.

[16] R. Quillan, Semantic Memory, in Semantic Information Processing, M. Minsky
(ed.), MIT Press, Cambridge, Mass. 1968.

[17] E. H. Shortliffe, Computer-based Medical Consultations: MYCIN, Elsevier, New
York, 1976.

[18] M. Minsky, A Framework for Representing Knowledge, in The Psychology of
Computer Vision, P. Winston (ed.), McGraw-Hill, New York, 1975.

[19] D. H. Warren and L. M. Pereira, Prolog: The Language and Its Implementation
Compared with Lisp, in Proc. Symposium on Artificial Intelligence and Program-
ming Languages. SIGPLAN Notices 12(8) and SIGART Newsletter 64, 1977, pp.
109-115.

[20] J. McDermott, RI: A Rule-based Configurer of Computer Systems, Artificial
Intelligence, Vol. 19, Sept. 1982, pp. 39-88.

[21] W. B. Gevarter, "The Nature and Evaluation of Commercial Expert System
Building Tools", IEEE Computer, Vol. 20, No. 5, May 1987, pp. 24-41.

[22] E. Rich, Artificial Intelligence, McGraw-Hill Book Company, New York, 1983.

[23] A. Newell, H.A. Simon, "GPS, A Program that Simulates Human Thoughts,"
in Computers and Thought, E. A. Feigenbaum, J. Feldman (Ed.), McGraw-Hill,
New York, 1963.

[24] R. E. Fikes, and N. J. Nilsson, "STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving", Artificial Intelligence, Vol 2, 1971, pp.
189-208.

[25] K. J. Hammond, "Planning and Goal Interaction: The use of past solutions
in present situations", Proc. of American Association of Artificial Intelligence
Conference 83, August 1983, pp. 148-151.

[26] M. J. Stefik, "Planning with Constraints", Artificial Intelligence, Vol. 16, 1981,
pp. 111-140.

[27] R. Wilensky, Planning and Understanding, Addison-Wesley Publishing Com-
pany, Reading Massachusetts, 1983.

[28] M. J. Setfik, "Planning and Meta-Planning", Artificial Intelligence, Vol. 16, 1981,
pp. 141-170.

[29] R. E. Korf, "Planning as Search: A Quantitative Approach", Artificial Intelli-
gence, Vol. 33, 1987, pp. 65-88.

88

[30] R. Davis, "Meta-Rules: Reasoning about Control-, Artificial Intelligence, Vol.
15. 1980, pp. 179-223.

[31] J. Doyle, "A Truth Maintenancc System', Artificial Intelligence, Vol. 12, 1979,
pp. 231-272.

[32] R. M. Stallman and G. J. Sussman, "Forward Reasoning and Dependency-
Directed Backtracking in a System for Computer-Aided Circuit Analysis", Arti-
ficial Intelligence, Vol. 9. No. 2, October 1977, pp. 135-196.

[33] D. McAllester,"An Outlook on Truth Maintenance", Artificial Intelligence Lab-
oratory, AIM-551, MIT, Cambridge, MA 1980.

[34] D. McDermott, "Contexts and Data Dependencies: A Synthesis", IEEE Trans.
Pattern Anal. Machine Intelligence, Vol. 5, No. 3, 1983, pp. 237-246.

[35] J. P. Martins, "Reasoning in Multi Belief Spaces", Department of Computer
Science, Tech. Rept No. 203, State University of New York, Buffalo, NY, 1983.

[36] J. de Kleer, "An Assumption-Based TMS", Artificial Intelligence, Vol. 28, No.
2, 1986, pp. 127-162.

[37] J. F. Gilmore and K. Pulaski, "A Survey of Expert System Tools", The Second
Conference of AI Application, 1985, pp. 498-502.

[38] Teknowledge, M.1 product description. Tecknowledge, 525 University Ave., Palo
rlto, Calf., 1984.

[39] Scs"tware Architecture and Engineering, Inc., Knowledge engineering systems. Ar-
tificial Intelligence Center, Suite 1220, 1401 Wilson Blvd., Arlington, VA 22209,
November 1983.

[40] L. Erman, A. C. Scott, and P. London, "Separating and Integrating Control
in a Rule-Based Tool." Proceedings of the IEEE Workshop on Principles of
Knowledge-Based Systems, IEEE Computer Society, IEEE Computer Press, Sil-
ver Spring, MD., 1984, pp. 37-43.

[41] C. Williams, "ART: The Advanced Reasoning Tool." Inference Corp. Report,
Inference Corp., 5300 W Century Blvd., Los Angeles, Calif., 1984.

[42] J. C. Kunz, T. P. Kehler and M. D. Waterman, eds. "Applications Development
Using a Hybrid Al Development System." Al Magazine, 5 (3), 1984, pp. 41-54.

[43] R. Kempf and M. Stelzner, "Teaching Object-Oriented Programming with the
KEE System", OOPSLA-87 Proceedings of Object-Oriented Programming Sys-
tems, Languages, and Applications, Vol. 22, No. 12, October 1987, pp. 11-25.

[44] "User's Guide for the Automated Measurement System", Rome Air Development
Center, 1987.

89

145] A. Goldberg and D. Robson, "Smalltalk-80: The Language and Its Implementa-
tion", Addison-Wesley, 1983.

[461 V. Dhar and M. Jarke, "Dependency Directed Reasoning and Learning in Sys-
tems Maintenance Support", IEEE Transactions on Software Engineering, Vol.
SE-14, No. 2, February 1988, pp. 211-227.

[47] C. Potts and G. Bruns, "Recording the Reasons for Design Decisions", Proc. of
10th International Conference on Software Engineering, 1988, pp. 418-427.

[48] C. Williams, "Managing Search in a Knowledge-Based System", unpublished,
1985.

[49] J. de Kleer, "Problem Solving with the ATMS", Artificial Intelligence, Vol. 28,
No. 2, 1986, pp. 197-224.

[50] S. S. Yau and C. S. Liu, "An Approach to Software Requirement Specification",
COMPSA C 88 Proc., October 1988, pp. 197-224.

[51] WV. W. Agresti (ed.), Tutorial, New Paradigms for Software Development, IEEE
Computer Society Press, 1986.

90

MISSION

of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C3I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C3l systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

